Abstract:
A method for drying substrates using isopropyl alcohol (IPA) includes: a pre-stage in which heated fluid is injected to a bottom surface of a substrate to raise a temperature of the substrate simultaneously to injection of an organic solvent to a top surface of the substrate and injection of a dry gas to the top surface thereof to improve a vaporization power of the organic solvent; and a final stage in which the injection of the heated fluid is stopped and the organic solvent and the dry gas are injected to the top surface of the substrate.
Abstract:
A substrate processing apparatus includes a main load unit, a buffer load unit, and a transfer unit. Containers each accommodating substrates are placed on the main load unit and the buffer load unit. The buffer load unit is disposed above the main load unit and movable into and outward from a process module. Therefore, more containers can be placed in the substrate processing apparatus without increasing the footprint of the substrate processing apparatus, and thus it is possible to reduce equipment idle time during which standby substrates wait before being processed, thereby improving productivity.
Abstract:
The present invention is directed to a method and an apparatus for cleaning and drying wafers. The apparatus includes an injection unit having first and second injection ports configured for injecting different fluids and arranged in a moving direction of the rose or on a line adjacent to the moving direction. The injection unit migrates straightly from the center of a wafer to the edge thereof, and the first and second injection ports are linearly arranged on a moving line of the nozzle.
Abstract:
The present is directed to an apparatus for etching the top edge and bottom of a wafer. The apparatus includes a substrate support part for supporting a wafer and a movable protect part for preventing fluid for an etch from flowing into a non-etch portion of the wafer. The top edge and bottom of the wafer is etched by a wet etch, and a boundary of the non-etch portion and the edge of the wafer is etched by a dry etch.
Abstract:
The present invention is directed to a chemical supply apparatus including a first tank in which at least two chemicals supplied from each supply bath are mixed, circulating means for circulating the chemicals in the first tank to uniformly mix the chemicals therein, a second tank for storing the mixed solution provided from the first tank, a distributor for distributing the mixed solution to supply the mixed solution to each processing unit, and a heating unit mounted upon a supply line for supplying the mixed solution to the distributor to heat up the mixed solution.
Abstract:
A method for drying a semiconductor substrate includes the steps of clearing the substrate by supplying a liquid into a processing bath of a chamber, injecting first dry gases onto a surface of the supplied liquid, draining the liquid from the processing bath so that the substrate is slowly exposed to the surface of the liquid, and injecting a second dry gas into the chamber and forcibly exhausting gas in the chamber.
Abstract:
An apparatus for drying a semiconductor substrate includes a chamber having a processing bath and a cover, a liquid flow system for supplying a liquid flow into the processing bath so as to clean the substrate and for draining a liquid from the processing bath, a gas distributor for spraying a gas for drying the substrate, and decompression means for exhausting air in the chamber.
Abstract:
A method for drying substrates using isopropyl alcohol (IPA) includes: a pre-stage in which heated fluid is injected to a bottom surface of a substrate to raise a temperature of the substrate simultaneously to injection of an organic solvent to a top surface of the substrate and injection of a dry gas to the top surface thereof to improve a vaporization power of the organic solvent; and a final stage in which the injection of the heated fluid is stopped and the organic solvent and the dry gas are injected to the top surface of the substrate.
Abstract:
Provided is a spin head supporting a substrate and rotating the substrate. The spin head includes a body, chuck pins installed on the body and moving between supporting positions where a substrate is supported and waiting positions providing space for loading/unloading of the substrate, and a chuck pin moving unit configured to move the chuck pins. The chuck pin moving unit includes a rotation rod coupled with each of the chuck pins, a pivot pin fixing the rotation rod to the body, and a driving member rotating the rotation rod about the pivot pin as a rotation shaft to move the chuck pin from the supporting position to the waiting position. When the body rotates, the rotation rod uses reverse centrifugal force to apply force to the chuck pin from the waiting position to the supporting position. The chuck pins include first pins and second pins that alternately chuck a substrate during a process.
Abstract:
A supply system for supplying a functional water to a process unit which treats a substrate using the functional water is provided. In the system, the functional water generated in the functional water generator is supplied to a distributor through a functional water supply pipe. Thereafter, the functional water is supplied to the process unit while the process unit performs a process, and the functional water is returned to the functional water generator through a functional water returning pipe while the process unit does not perform a process. A buffer tank is installed in the functional water supply pipe and the concentration of the functional water is measured in a circulation line connected with the buffer tank. When the measured concentration of the functional water goes out of a set concentration range, the functional water is returned to the functional water generator through functional water returning pipe.