Abstract:
Techniques for movement languages in wearable devices are described, including Receiving input from a sensor coupled to a wearable device, processing the input to determine a pattern, the pattern associated with a movement, referencing a pattern library stored in a database to compare the pattern to a set of patterns in the pattern library, and performing an operation based on a comparison of the pattern to the set of patterns.
Abstract:
Spatial and temporal vector analysis in wearable devices using sensor data are described, including evaluating a motion to determine motion signals, the motion being evaluated using data provided by one or more sensors in data communication with a wearable device, isolating motion signals into one or more motion sub-signals, determining a spatial vector and a temporal vector associated with each of the one or more motion sub-signals, and transforming the spatial vector and the temporal vector into a data structure to be used by an application configured to analyze the data structure and to generate content associated with the motion.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a band including sensors, a controller coupled to the sensors, an energy storage device, a connector configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to manage power consumption of the band during a first power mode and a second mode. The band can be configured as a wearable communications device and sensor platform.
Abstract:
A data-capable band for medical diagnosis, monitoring, and treatment is described, including one or more sensors configured to gather data associated with diagnosis, monitoring or treatment of a medical condition, an application configured to determine the medical condition using the data gathered by the sensors, a memory configured to store the data and the application, and a notification facility configured to provide an array of notifications in relation to the monitoring and treatment of the medical conditions. The notifications may be alarms, may be designed to prompt movement, or may be associated with a drug regimen.
Abstract:
Techniques associated with a combination speaker and light source powered using a light socket are described, including a housing comprising a plate coupled to a substantially hemispherical enclosure, a platform configured to couple a light source to a terminal configured to receive a light control signal, the light control signal configured to modify a light characteristic, a speaker coupled to the housing and configured to project audio in a direction, a light socket connector coupled to the housing and configured to provide power to the speaker and the light source when the light socket connector is coupled with a light socket, an acoustic sensor disposed on a surface of the housing, and a light sensor located within the housing, the light sensor facing away from the light source.
Abstract:
Techniques associated with a combination speaker and light source (“speaker-light device”) responsive to states of an organism based on sensor data are described, including generating motion sensor data in response to a movement captured using a motion sensor, deriving movement data using a motion analysis module configured to determine the movement to be associated with one or more of a gesture, an identity, and an activity, using the motion sensor data, generating acoustic sensor data in response to sound captured using an acoustic sensor, deriving audio data using a noise removal module configured to subtract a noise signal from the acoustic sensor data, detecting a radio frequency signal using a communication facility, the radio frequency being associated with a personal device, obtaining state data from the personal device, and determining a desired light characteristic using the state data and one or both of the movement data and the audio data.
Abstract:
Techniques for motion profiles in wearable devices are described, including receiving motion-related data, user-related data, and environmental-related data from one or more sensors coupled to one or more wearable devices, forming a motion profile using the motion-related data, determining an activity using the motion profile, the user-related data, and the environmental-related data, the activity comprising sleep, and setting a mode of operation of one of the one or more wearable devices to a sleep mode, the mode of operation being configured to be set to one of the sleep mode and another mode. A sampling rate of one of the one or more sensors in the sleep mode may be set to be lower than the sampling rate of the one of the one or more sensors in the another mode.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a band including sensors, a controller coupled to the sensors, an energy storage device, a connector configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to manage power consumption of the band during a first power mode and a second mode. The band can be configured as a wearable communications device and sensor platform.
Abstract:
Techniques for device control using sensory input are described, including receiving input from one or more sensors coupled to a wearable computing device, processing the input to determine a pattern, the pattern associated with a social network, and generating a control signal based on the input, the control signal configured to initiate execution of a social-related activity on the social network.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband, including receiving input from one or more sensors coupled to a wearable computing device, processing the input to determine a pattern, the pattern indicating a threshold clock frequency, and operating a processor coupled to the wearable computing device at a clock frequency above the threshold clock frequency.