Abstract:
A phase locked loop (PLL) generates a phase locked signal and adjusts a frequency of the phase locked signal according to an incoming signal. The PLL includes an oscillator for generating the phased locked signal and a frequency detection module electrically coupled to the oscillator. The frequency detection module includes a pattern detector for detecting the two regular patterns in the incoming signal, a counter electrically coupled to the pattern detector for calculating the number of periods of the phase locked signal corresponding to the distance between the two regular patterns, and a comparator electrically coupled to the counter for comparing the number of periods with a predetermined value to generate a control signal, and using the control signal to control the oscillator to adjust the frequency of the phase locked loop signal.
Abstract:
An eFuse with at least one fuse unit is provided. The fuse unit includes a first common node providing a first reference voltage, a second common node providing a second reference voltage, at least one fuse coupled to the first common node, and a determining unit coupled between the fuse and the second common node, generating an output signal indicating whether the fuse is blown or not according to a first condition in a normal mode and a second condition in a test mode.
Abstract:
An exemplary calibration apparatus includes a detecting circuit and a calibrating circuit. The detecting circuit is arranged for generating a detection result by detecting relationship between edges of a plurality of signals generated from a plurality of signal sources, wherein at least one of the edges is a falling edge. The calibrating circuit is coupled to the detecting circuit, and arranged for calibrating at least one of the signal sources according to the detection result. An exemplary calibration method includes the following steps: generating a detection result by detecting relationship between edges of a plurality of signals generated from a plurality of signal sources, wherein at least one of the edges is a falling edge; and calibrating at least one of the signal sources according to the detection result.
Abstract:
A hardware status detecting circuit for detecting a hardware status of a target apparatus includes a plurality of hardware status detectors operating in response to the hardware status of the target apparatus, and a signal processing unit coupled to the hardware status detectors for generating a hardware status detecting signal having information of operational statuses of the hardware status detectors embedded therein.
Abstract:
An apparatus for controlling discrete data in a disk overwrite area or a power calibration area comprises a signal-processing unit, an address-processing unit, a control signal-processing unit, a clock recovery circuit, a signal-processing unit parameter control unit, and a clock recovery circuit parameter control unit, wherein the control signal-processing unit uses a message produced by a data on the disc to determine the control signals such as hold, load, or increasing bandwidth for holding, loading, and increasing the bandwidth of the parameters for processing the related circuits (such as the circuit of the signal-processing unit or the clock recovery circuit) of the discrete data produced between the two data clusters, so as to increase the convergent speed of the circuits for assuring the accuracy of reading data.
Abstract:
Disclosed is a data search system for searching the data sync pattern by using a physical address or by detecting the falling edge of the blank area end. The data search system comprises a first data start indicator, a second data start indicator, a decision circuit, a window generator and a data sync pattern search circuit. The first data start indicator generates a first start search signal indicating a first start position. The second data start indicator generates a second start search signal indicating a second start position. The decision circuit selects to output one of the start search signals. The window generator generates a window interval starting from the start position. The data sync pattern search circuit searches a data sync pattern of the data in the window interval to determine the data following the data sync pattern.
Abstract:
The present invention discloses an address protection method and circuit capable of efficiently protecting inputting addresses from corruption. The predictable order of a series of original addresses is checked and then the correct addresses are generated by correcting the corrupted addresses within the original addresses. The address protection method and circuit according to the present invention can improve the accuracy of the inputting addresses and increase the validity of data in response to the inputting addresses.
Abstract:
A control circuit and a control method of controlling a rotation frequency of a spindle in an optical disc drive, the control circuit comprising: a spindle controller, electrically coupled to the spindle, for driving the spindle to rotate an optical disc according to a rotation control signal; a detector, electrically coupled to the spindle controller, for detecting the rotation frequency and for generating detecting signals; a frequency-adjusting module, electrically coupled to the detector, for adjusting at least one of the detecting signals to reduce a rotation frequency difference between detecting signals; a signal selector, electrically coupled to the frequency-adjusting module, for receiving output signals generated from the frequency-adjusting module and then outputting the rotation control signal.
Abstract:
A control circuit and a control method of controlling a rotation frequency of a spindle in an optical disc drive, the control circuit comprising: a spindle controller, electrically coupled to the spindle, for driving the spindle to rotate an optical disc according to a rotation control signal; a detector, electrically coupled to the spindle controller, for detecting the rotation frequency and for generating detecting signals; a frequency-adjusting module, electrically coupled to the detector, for adjusting at least one of the detecting signals to reduce a rotation frequency difference between detecting signals; a signal selector, electrically coupled to the frequency-adjusting module, for receiving output signals generated from the frequency-adjusting module and then outputting the rotation control signal.
Abstract:
Disclosed is a data search system for searching the data sync pattern by using a physical address or by detecting the falling edge of the blank area end. The data search system comprises a first data start indicator, a second data start indicator, a decision circuit, a window generator and a data sync pattern search circuit. The first data start indicator generates a first start search signal indicating a first start position. The second data start indicator generates a second start search signal indicating a second start position. The decision circuit selects to output one of the start search signals. The window generator generates a window interval starting from the start position. The data sync pattern search circuit searches a data sync pattern of the data in the window interval to determine the data following the data sync pattern.