Abstract:
By selectively performing a pre-amorphization implantation process in logic areas and memory areas, the negative effect of the interaction between stressed overlayers and dislocation defects may be avoided or at least significantly reduced in the memory areas, thereby increasing production yield and stability of the memory areas.
Abstract:
By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
Abstract:
By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
Abstract:
By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
Abstract:
By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
Abstract:
By introducing a atomic species, such as carbon, fluorine and the like, into the drain and source regions, as well as in the body region, the junction leakage of SOI transistors may be significantly increased, thereby providing an enhanced leakage path for accumulated minority charge carriers. Consequently, fluctuations of the body potential may be significantly reduced, thereby improving the overall performance of advanced SOI devices. In particular embodiments, the mechanism may be selectively applied to threshold voltage sensitive device areas, such as static RAM areas.