摘要:
By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions.
摘要:
By using an implantation mask having a high intrinsic stress, SMT sequences may be provided in which additional lithography steps may be avoided. Consequently, a strain source may be provided without significantly contributing to the overall process complexity.
摘要:
According to an illustrative example, a method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first feature and a second feature. A material layer is formed over the first feature and the second feature. A mask is formed over the first feature. At least one etch process adapted to form a sidewall spacer structure adjacent the second feature from a portion of the material layer is performed. The mask protects a portion of the material layer over the first feature from being affected by the at least one etch process. An ion implantation process is performed. The mask remains over the first feature during the ion implantation process.
摘要:
By removing an outer spacer of a transistor element, used for the formation of highly complex lateral dopant profiles, prior to the formation of metal silicide, employing a wet chemical etch process, it is possible to position a stressed contact liner layer more closely to the channel region, thereby allowing a highly efficient stress transfer mechanism for creating a corresponding strain in the channel region, without affecting circuit elements in the P-type regions.
摘要:
A semiconductor device having small electrical contacts to impurity doped regions and a method for fabrication of such a device are provided. In accordance with one embodiment of the invention the semiconductor device comprises a semiconductor substrate having a doped region formed therein. The doped region has a nucleating layer comprising nickel on its surface, and a nanowire structure comprising silicon and carbon electrically contacts the nucleating layer.
摘要:
By forming a semiconductor alloy in a silicon-based active semiconductor region prior to the gate patterning, material characteristics of the semiconductor alloy itself may also be exploited in addition to the strain-inducing effect thereof. Consequently, device performance of advanced field effect transistors may be even further enhanced compared to conventional approaches using a strained semiconductor alloy in the drain and source regions.
摘要:
By providing a self-biasing semiconductor switch, an SRAM cell having a reduced number of individual active components may be realized. In particular embodiments, the self-biasing semiconductor device may be provided in the form of a double channel field effect transistor that allows the formation of an SRAM cell with less than six transistor elements and, in preferred embodiments, with as few as two individual transistor elements.
摘要:
A transistor device and methods for its fabrication are provided. In an embodiment, the transistor is fabricated within and on a surface of a semiconductor substrate. The method includes forming a gate structure with a dummy gate electrode material overlying the semiconductor substrate. Recesses are etched into the semiconductor substrate adjacent the gate structure to define a narrow region between the recesses at a selected depth under the surface. The recesses are filled with a stress-inducing material and the dummy gate electrode material is removed to expose the semiconductor substrate. The method further provides for etching the exposed semiconductor substrate to form a recessed gate surface and defining a channel under the recessed gate surface in the narrow region.
摘要:
A three-dimensional double channel transistor configuration is provided in which a second channel region may be embedded into the body region of the transistor, thereby providing a three-state behavior, which may therefore increase functionality of conventional three-dimensional transistor architectures. The double channel three-dimensional transistors may be used for forming a static RAM cell with a reduced number of transistors, while also providing scalability by taking advantage of the enhanced controllability of FinFETS and nano pipe transistor architectures.
摘要:
By providing a body controlled double channel transistor, increased functionality in combination with enhanced stability may be accomplished. For instance, flip flop circuits usable for static RAM cells may be formed on the basis of the body controlled double channel transistor, thereby reducing the number of transistors required per cell, which may result in increased information density.