Abstract:
In a QAM microwave radio communications system an IF (intermediate frequency) input signal is amplified and predistorted, and the amplified IF signal is mixed with a local oscillator signal to produce an RF (radio frequency) signal which is amplified in a power amplifier for transmission, the predistortion compensating for non-linearity of the power amplifier. Adaptive phase control of the predistorter is provided by mixing the local oscillator signal with part of the RF signal to produce an IF output signal representative of the output of the power amplifier, detecting phase differences between the IF input and IF output signals to produce a phase difference signal, selectively inverting the phase difference signal in dependence upon whether or not an IF signal amplitude exceeds a comparison level, and integrating the selectively inverted phase difference signal to produce a phase control signal for the predistorter.
Abstract:
The present invention provides a method of detecting the clock rate and recovering the carrier in a TDMA (time division multiple access) signal. The quadrature baseband components are stored for a predetermined amount of time as sampled data and the clock phase error of the baseband samples are estimated. The clock phase of the baseband samples are corrected from the estimated clock phase error by using interpolation over the sampled quadrature components. The carrier phase error of the stored baseband time corrected quadrature samples are then estimated and the carrier phase is corrected according to the estimated phase error. The corrected clock and carrier signals are then forwarded to decision circuit means for providing demodulated data.
Abstract:
Consistent with the present disclosure a transmitter is provided that transmits data in either a “quasi-DP-BPSK” (“QDP”) mode or in a DP-QPSK mode. In the QDP mode, data bits are transmitted as changes in phase between first and second phase states along a first axis or as changes in phase between third and fourth phase states along a second axis in the IQ plane. Although the transmitter outputs an optical signal that changes in phase between each of the four states, a sequence bit identifies which axis carries the data bit. The sequence bit is one of a series of sequence bits that may be generated by a pseudo-random number generator. The series of sequence bits can be relatively long, e.g., 32 bits, to permit sufficiently random changes in the axis that carries the data. Thus, unlike conventional BPSK, in which data is transmitted between phase states along a single axis, the present disclosure provides an apparatus and related method for randomly selecting one of two axes, for example, for each transmitted bit. In the receiver, it has been observed that the MU-CMA algorithm can process data carried by optical signals in the QDP mode with relatively few errors. Thus, the same equalizer (FIR) filter may be used to process BPSK, as well as QPSK data.
Abstract:
An optical system may include optical transmitters to provide respective optical signals. Each of the respective optical signals may provide one or more carriers in an optical channel. The optical channel may include multiple carriers associated with the respective optical signals. First and second carriers, of the multiple carriers, may have a particular carrier space width. The particular carrier space width may include a frequency error associated with one or more optical signals of the respective optical signals. The optical system may include a control system to determine the frequency error and cause one or more of the optical transmitters to adjust the particular carrier space width based on the adjusted frequency error.
Abstract:
An optical system may include optical transmitters to provide respective optical signals. Each of the respective optical signals may provide one or more carriers in an optical channel. The optical channel may include multiple carriers associated with the respective optical signals. First and second carriers, of the multiple carriers, may have a particular carrier space width. The particular carrier space width may include a frequency error associated with one or more optical signals of the respective optical signals. The optical system may include a control system to determine the frequency error and cause one or more of the optical transmitters to adjust the particular carrier space width based on the adjusted frequency error.
Abstract:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
Abstract:
A system, method, and apparatus is disclosed for interpolation of an output of an analog to digital converter (ADC) to enable operation of the ADC at a sampling rate that is independent of the sampling rate for a DSP core so as to efficiently enable operation at higher date rates. According to one of the embodiments, an interpolation circuit is coupled between the ADC and DSP core and receives a first plurality of samples of data at the first data rate from the ADC and supplies a plurality of samples of second data at a second data rate to the DSP core; the second data rate being less than the first data rate. According to one of the embodiments, the interpolation circuit includes a memory and a FIR filter circuit having filter tap coefficient values selected to provide attenuation at high frequencies to reduce aliasing noise.
Abstract:
Consistent with the present disclosure, data, in digital form, is received by a transmit nodes of an optical communication, and converted to analog signal by a digital-to-analog converter (DAC) to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data. The modulated light is then transmitted over an optical communication path to a receive node. At the receive node, the modulated optical signal, as well as other modulated optical signals are supplied to a photodetector circuit, which receives additional light at one of the optical signal wavelengths from a local oscillator laser. An analog-to-digital converter (ADC) is provided in the receive node to convert the electrical signals output from the photodetector into digital form. The output from the ADC is then filtered in the electrical domain, such that optical demultiplexing of individual channels is unnecessary.
Abstract:
In a QAM microwave radio communications system an IF (intermediate frequency) input signal is amplified and predistorted, and the amplified IF signal is mixed with a local oscillator signal to produce an RF (radio frequency) signal which is amplified in a power amplifier for transmission, the predistortion compensating for non-linear gain of the power amplifier. Clipping in the power amplifier is controlled by down-converting part of the RF signal to produce an IF output signal, monitoring amplitude distortion of the RF signal by comparing the IF output signal with the IF input signal, and controlling the IF amplifier gain in dependence upon the monitored amplitude distortion.
Abstract:
Consistent with the present disclosure, data, in digital form, is received by a transmit node of an optical communication system, is processed and then output to drive a modulator. The modulator, in turn, modulates light at one of a plurality of wavelengths in accordance with the received data, forming a plurality of corresponding carriers. The plurality of wavelengths used for the plurality of carriers are spectrally spaced apart by a common, periodic fixed spacing. The plurality of carriers are optically combined with a fixed spacing combiner to form a superchannel. A plurality of superchannels are generated and then multiplexed together onto an optical communication path and transmitted to a receive node. Each superchannel includes a plurality of carriers, each spectrally separated by the same fixed spacing. The plurality of superchannels are spectrally separated by an amount corresponding to the fixed spacing of the plurality of carriers. At the receive node, the superchannels are optically demultiplexed, and the plurality of carriers of a respective superchannel are then supplied to a photodetector circuit, which receives additional light at one of the optical signal carrier wavelengths from a local oscillator laser. The resultant signals are then processed electronically to separate the individual carriers and output data corresponding to the input data.