Abstract:
Formula (I) wherein R1 is a (2-4C)alkyl and is substituted by two or more fluorine groups and R2 is methyl or ethyl, or a pharmaceutically acceptable salt thereof; processes for their preparation, pharmaceutical compositions containing them and their use in the treatment of diseases or medical conditions mediated by metalloproteinase enzymes.
Abstract:
A method for scheduling of periodic real time processes in an operating system, comprising the steps of defining a reference point in time for a periodic real time process, and scheduling the periodic real time process from the reference point in time. Preferably a future point in time is defined as the reference point in time at the start up of the operating system. The real time process is preferably a periodic control process during which a relative control point in time, counted from the beginning of the subsequent control cycle, is calculated during each cycle with absolute time correction counted from the reference point in time. The absolute time correction corresponds to the period of the periodic process multiplied with the number of passed control periods until the beginning of the subsequent control cycle, at which the absolute control point in time is calculated through an addition of the relative control point in time with the absolute time correction. In one embodiment the method according to the invention is applied in an active filter for compensation of variations in an apparatus current consumption from a power grid as a result of changes in the apparatus' electrical load.
Abstract:
RF polar modulation circuit has a self-compensated temperature stable envelope controller and self-compensated temperature stable power amplifier bias. The circuit has an adaptive current-to-voltage modulation interface with pre-distortion compensation capability. AM/PM distortion are compensated for envelope dependent power amplifier transistor biasing. Automatic compensation is provided for RF loads that are higher or lower than nominal loads. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A combination of a phase shifter, a measurement receiver, and an offset estimator enable the d.c. offset in the transmit path of a quadrature transmitter to be distinguished from the d.c. offset in the measurement receiver. The measurement receiver performs a first measurement on the transmit path output with a “normal” phase shift of 0 degrees and 90 degrees for in-phase (I) and quadrature (Q) components, and a second measurement with a “special” phase shift for the I and Q components. In one embodiment, the “special” phase shift for the I and Q components is 180 degrees and 270 degrees, respectively.
Abstract:
Predistortion that will compensate for distortion introduced by a power amplifier circuit is determined by applying a time-varying reference signal to the power amplifier circuit, wherein at each moment the time-varying reference signal has a reference amplitude and a reference phase. A corresponding output signal supplied by the power amplifier circuit is measured, wherein at each moment the output signal has a measured amplitude and a measured phase. Amplitude predistortion is determined by comparing the reference amplitude with the measured amplitude, and phase predistortion is determined by comparing the reference phase with the measured phase. A relationship between the phase predistortion and the reference amplitude is determined such that, for any value of the reference amplitude, a corresponding value of the phase predistortion is identified.
Abstract:
An insulator for separating two objects with different electrical potential, the insulator including an insulating body enclosing a first volume for housing a gas, the body being provided with an opening, and a sealing arrangement arranged to seal the opening in the body and including a first gas-tight sealing element for sealing the opening and provided with a first closable opening, and a second gas-tight sealing element for sealing the opening, and arranged inside the first sealing element so that the first and second sealing elements define a second volume significantly smaller than the first volume. The second sealing element is provided with a second closable opening which in cooperation with the first closable opening enable control of the gas pressure in the first volume. Methods for leakage detection of the insulator are also disclosed.
Abstract:
A support bracket for supporting insulating rods inside an insulator tube of a hollow core insulator. The support bracket includes a cylindrical ring with an outer surface for abutting against the inner surface of an insulator tube, an inner surface for supporting an insulating rod and two opposing end sides, denominated by first and second end sides. The support bracket includes an expansion assembly configured to be actuated so as to expand the cylindrical ring in at least one radial direction when the support bracket has been inserted in an insulator tube of a live tank circuit breaker.
Abstract:
A wireless communication transmitter is configured to determine transmitter phase shift, and correspondingly includes a derivation circuit, one or more slope polarity tracking circuits, and a phase shift computation circuit. The derivation circuit derives a reference signal from a signal input to the transmitter and a feedback signal from the transmit signal corresponding to that input signal. So derived, differences in the reference and feedback signals reveal the effect the transmitter has on the transmit signal. Accordingly, the transmitter focuses on differences in the polarities of the reference signal's slope and the feedback signal's slope to determine the effect the transmitter has on the phase of the transmit signal. That is, the slope polarity tracking circuits track the slope polarities of the reference and feedback signals, while the phase shift computation circuit computes the transmitter phase shift as a function of differences in those tracked slope polarities.
Abstract:
A communication device includes a transmitter configured to provide a transmitted output signal, and a power detector configured to receive reference signals from a waveform generator associated with the transmitter, and to receive a portion of the transmitted output signal from the transmitter. The power detector is further configured to compare the reference signals with a digital representation of the portion of the transmitted output signal, and calculate a gain associated with the transmitter based on the comparison. The power detector is also configured to receive, from the waveform generator, a root mean square (RMS) value of the reference signals, and generate an estimate of the output power of the transmitter based on the calculated gain and the root mean square (RMS) value of the reference signals.
Abstract:
A method and apparatus adaptively compensates for nonlinearities of a power amplifier by measuring a distortion characteristic across the power amplifier during amplification of a distortion detection signal. The distortion detection signal has a well-defined input power versus time relationship, such as ramp-up signal or ramp-down signal. Due to this well-defined relationship, the distortion characteristic can be calculated as a function of the input power level. This calculated function is then utilized to update a predistortion lookup table.