Abstract:
A memory device and a method to prevent or reduce program disturb by isolating P-wells of strings in a non-volatile memory array. During a program operation, the isolated P-wells may be coupled to corresponding bitlines, which may be selected or inhibited, and may be at different voltages. During erase, read, and verify operations, the isolated P-wells may be coupled to source.
Abstract:
Embodiments of an apparatus and methods for providing improved flash memory cell characteristics are generally described herein. Other embodiments may be described and claimed.
Abstract:
A method and device using bitline-bitline capacitance between adjacent bitlines to boost seed voltage in a memory device are provided. The method may include a precharge phase, a boost phase, an equalize phase, and a lock in phase. In one embodiment, the method may include boosting the seed voltage twice. The bitlines may be divided into one or more segments.
Abstract:
A nonvolatile memory cell comprising a pair of spaced apart shallow trench isolation regions formed in a substrate and defining a substrate active region. A tunnel dielectric is formed on the substrate active region. A floating gate is formed on the tunnel dielectric and is self aligned between the spaced apart shallow trench isolation regions. A dielectric layer is formed on the floating gate and a control gate formed on the dielectric layer. A source region and a drain region are formed in the substrate active region on opposite sides of the floating gate.
Abstract:
A nonvolatile memory cell comprising a pair of spaced apart shallow trench isolation regions formed in a substrate and defining a substrate active region. A tunnel dielectric is formed on the substrate active region. A floating gate is formed on the tunnel dielectric and is self aligned between the spaced apart shallow trench isolation regions. A dielectric layer is formed on the floating gate and a control gate formed on the dielectric layer. A source region and a drain region are formed in the substrate active region on opposite sides of the floating gate.
Abstract:
An arrangement for preventing damage to a circuit of an integrated circuit due to the occurrence of voltage transients introduced externally to the integrated circuit. According to one embodiment, the voltage transients are due to electrostatic discharge (ESD). The arrangement comprises a latch for coupling to an input pad of the integrated circuit. The latch asserts a first signal in response to sensing the occurrence of the voltage transient at the input pad. A transient protection circuit is coupled to the input pad for coupling the input pad to ground in response to the latch asserting the first signal such that current associated with the voltage transient is shunted to ground. A circuit is coupled to the latch for preventing the latch from asserting the first signal in response to the occurrence of the voltage transient if a predetermined condition exists. According to a present embodiment, the circuit is a timer that disables the latch in response to a supply output voltage VCC exceeding a predetermined level.
Abstract:
Devices, systems and methods of biasing in memory devices facilitate memory device programming and/or erase operations. In at least one embodiment, a first string of memory cells comprising a selected memory cell and a second string of memory cells are coupled to a common data line and a common source where the data line and the source are biased to substantially the same potential during a programming and/or erase operation performed on one or more of the strings of memory cells.
Abstract:
Methods for programming a memory device, memory devices configured to perform the disclosed programming methods, and memory systems having a memory device configured to perform the disclosed programming methods, for example, are provided. According to at least one such method, multiple independent semiconductor well regions each having strings of memory cells are independently biased during a programming operation performed on a memory device. Reduced charge leakage may be realized during a programming operation in response to independent well biasing methods.
Abstract:
Some embodiments include methods and devices having a module and memory cells. The module is configured to reduce the amount of electrons in the sources and drains of the memory cells during a programming operation.
Abstract:
Methods for programming a memory device, memory devices configured to perform the disclosed programming methods, and memory systems having a memory device configured to perform the disclosed programming methods, for example, are provided. According to at least one such method, multiple independent semiconductor well regions each having strings of memory cells are independently biased during a programming operation performed on a memory device. Reduced charge leakage may be realized during a programming operation in response to independent well biasing methods.