Abstract:
A FCC catalyst having improved coke selectivity and greater catalyst strength, and a FCC process for converting hydrocarbon feedstocks to lower boiling products. The catalyst comprises a crystalline aluminosilicate zeolite, gibbsite, and a silica matrix prepared from at least one of a silica sol made by an ion-exchange process and an acidic silica sol prepared by mixing sodium silicate, an acid and an aluminum salt of an acid.
Abstract:
A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
Abstract:
An apparatus for reforming a hydrocarbon stream is presented. The apparatus involves changing the design of reformers and associated equipment to allow for increasing the processing temperatures in the reformers and heaters. The reformers are operated under different conditions to utilize advantages in the equilibriums, but require modifications to prevent increasing thermal cracking and to prevent increases in coking.
Abstract:
An exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels each vessel containing an activated carbon adsorbent. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon adsorbent wherein the first activated carbon adsorbent comprises iron.
Abstract:
One exemplary embodiment can be a process for producing a reformate by combining a stream having an effective amount of methane and a stream having an effective amount of naphtha for reforming. Generally, the naphtha includes not less than about 95%, by weight, of one or more compounds having a boiling point of about 38-about 260° C. as determined by ASTM D86-07. Moreover, the process can include introducing the combined stream to a reforming reaction zone. Generally, the combined stream has a methane:naphtha mass ratio of about 0.03:1.00-about 0.10:1.00.
Abstract:
A catalytic cracking catalyst and catalytic cracking process for cracking the 650.degree. F.+ portion in a heavy feed to lighter products. The catalytic cracking catalyst contains a Y zeolite in a silica binder that is substantially free of catalytically active alumina. The silica binder contains silica gel as a component.
Abstract:
One exemplary embodiment can be a process for producing a reformate by combining a stream having an effective amount of isopentane and a stream having an effective amount of naphtha for reforming. Generally, the naphtha has not less than about 95%, by weight, of one or more compounds having a boiling point of about 38-about 260° C. as determined by ASTM D86-07. The process may include introducing the combined stream to a reforming reaction zone. The combined stream can have an isopentane:naphtha mass ratio of about 0.10:1.00-about 1.00:1.00.
Abstract:
One exemplary embodiment can be a process for facilitating a transfer of a metal catalyst component from at least one donor particle to at least one recipient particle in a catalytic naphtha reforming unit. The process can include transferring an effective amount of the metal catalyst component from the at least one donor particle to the at least one recipient particle under conditions to effect such transfer to improve a conversion of a hydrocarbon feed.
Abstract:
One exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon. The adsorption zone is operated at a temperature of at least 370° C.
Abstract:
One exemplary embodiment can be a process for facilitating a transfer of a metal catalyst component from at least one donor particle to at least one recipient particle in a catalytic naphtha reforming unit. The process can include transferring an effective amount of the metal catalyst component from the at least one donor particle to the at least one recipient particle under conditions to effect such transfer to improve a conversion of a hydrocarbon feed.