Abstract:
In a process for the catalytic hydrogenation of a polymethylolalkanal or a monomethylolalkanal of the formula (I) where R may be identical or different and are each a substituted or unsubstituted aliphatic hydrocarbon having from 1 to 22 carbon atoms, an aryl or arylalkyl group having from 6 to 22 carbon atoms or a methylol group, in the presence of a copper-containing catalyst, the hydrogenation feed comprising the polymethylolalkanal or monomethylolalkanal has a total content of metal ions of groups 3 to 14 of the Periodic Table of the Element of up to 5 ppm.
Abstract:
The invention provides a process for preparing polyester polyols of polyhydric alcohols by mono- or polyesterification of at least one carboxylic acid having at least two acid groups and/or at least one derivative of a dicarboxylic acid with polyhydric alcohols, optionally with the addition of a catalyst, while removing the water of reaction, wherein the polyhydric alcohol used has a formaldehyde acetal content of less than 500 ppm.
Abstract:
(Meth)acrylates of polyhydric alcohols are prepared by reacting (meth)acrylic acid and the corresponding polyhydric alcohol in the presence of at least one acidic catalyst and, if required, at least one polymerization inhibitor and in the presence or absence of a solvent, by a process in which the polyhydric alcohol used contains less than 500 ppm of bound formaldehyde.
Abstract:
A process is provided for increasing the yield in the preparation of polyhydric alcohols obtained from methylolated alkanals by hydrogenation, wherein derivatives of these alcohols are decomposed by adding 5 ppm to 1% by weight, preferably 100 to 1000 ppm, of a suitable acid to an anhydrous mixture containing these derivatives, heating the mixture to temperatures of 100 to 300° C. and then separating off the polyhydric alcohol by distillation. This process makes it possible simply and efficiently to decompose compounds which boil above the polyhydric alcohol and are unwanted by-products of its synthesis.
Abstract:
The invention provides novel mepiquat plant growth regulator compositions which have improved hygroscopicity and corrosion characteristics. The novel mepiquat plant growth regulator compositions of the invention can be readily prepared from technical mepiquat chlorid inter alia by electrochemical ion exchange processes or by quaternization of N-methylpiperidine with dimethylcarbonate as starting material.
Abstract:
Amines of the general formula I ##STR1## where R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5 and R.sup.6 : are each hydrogen, C.sub.1 -C.sub.20 -alkyl, C.sub.2 -C.sub.20 -alkenyl, C.sub.2 -C.sub.20 -alkynyl, C.sub.3 -C.sub.20 -cycloalkyl, C.sub.4 -C.sub.20 -alkylcycloalkyl, C.sub.4 -C.sub.20 -cycloalkylalkyl, aryl, C.sub.7 -C.sub.20 -alkylaryl or C.sub.7 -C.sub.20 -aralkyl,R.sub.1 and R.sup.2 together are a saturated or unsaturated C.sub.3 -C.sub.9 -alkylene chain andR.sup.3 or R.sup.5 is C.sub.21 -C.sub.200 -alkyl or C.sub.21 -C.sub.200 -alkenyl or R.sup.3 and R.sup.5 together are a C.sub.2 -C.sub.12 -alkylene chain,are prepared by reacting an olefin of the general formula II ##STR2## where R.sup.3, R.sup.4, R.sup.5 and R.sup.6 have the abovementioned meanings, with ammonia or a primary or secondary amine of the general formula III ##STR3## where R.sup.1 and R.sup.2 have the abovementioned meanings, at from 200.degree.0 to 350.degree. C. and from 100 to 300 bar in the presence of a heterogeneous catalyst, wherein the heterogeneous catalyst used is an NU-85 zeolite.
Abstract:
The invention relates to a method for increasing yield in the production of polyvalent alcohols, especially trimethylolpropane, obtained by condensing formaldehyde with a higher aldehyde. According to the inventive method, acid treatment is carried out on a mixture (high-boiling fraction) that is obtained by reprocessing, contains derivatives of said alcohols and has a higher boiling point than the respective alcohol, and the polyvalent alcohol is recovered from the acid-treated high-boiling fraction. The inventive method is characterised in that the water content of the high-boiling fraction amounts to between 20 and 90 wt. % in relation to the entire mixture of the high-boiling fraction and water.
Abstract:
Process for the catalytic hydrogenation of methylolalkanals of the formula where R1 and R2 are each, independently of one another, a further methylol group or an alkyl group having from 1 to 22 carbon atoms or an aryl or aralkyl group having from 6 to 33 carbon atoms, in the liquid phase over a hydrogenation catalyst, wherein the pH of the hydrogenation feed is set to from 6.3 to 7.8 by addition of at least one tertiary amine.
Abstract:
A process is provided for improving the color number of polyhydric alcohols, especially trimethylolpropane, by catalytic hydrogenation, the polyhydric alcohol used in the hydrogenation having been purified by distillation following its preparation, wherein the hydrogenation is carried out in the presence of a macroporous supported heterogeneous catalyst containing, as the active metal, at least one metal of subgroups VII to X of the Periodic Table.
Abstract:
The invention provides a process for preparing polyetherols of polyhydric alcohols by reacting an alkylene oxide with the appropriate polyhydric alcohol in the presence of a base and in the presence or absence of a solvent, wherein the polyhydric alcohol used has a formaldehyde acetal content of less than 500 ppm.