Abstract:
A bogie shaft for railway vehicles has a cladding which contains a metal component. The metal component is preferably electrochemically less refined, but no greater than exactly as refined, as a material of the bogie shaft. Corrosion on the bogie shaft can thereby be advantageously prevented. The metal material of the cladding is also able to effectively protect the bogie shaft against stone impact. The cladding can be advantageously applied by cold gas spraying, or a sleeve can be bent around the bogie shaft for forming the cladding. The cladding can advantageously contain particles that can make it more resistant to stone impact. The particles can be made, for example, of hard materials, of particularly ductile particles, or of particles made of a memory shape alloy.
Abstract:
A component part has a catalyst surface. This surface has metallic components and components of MnO2 (13) in contact with the former. The metallic components are preferably formed of Ag and/or Ni. These material pairs achieve a great improvement in catalyst action compared to the pure metals. Especially in the case of use of Ni, which is toxicologically safe, these surfaces, for example, may also find use in ambient air purification for reduction of the ozone content. The surface can be applied, for example, by a coating of the component part, in which case the metallic component and the component of MnO2 are applied in two layers.
Abstract:
A method generates an abrasive wear-resistant layer on a substrate. The layer is formed of particles of a ductile material, in particular Zn, wherein the parameters of the cold spraying process are set such that a comparatively loose laminate having pores is formed by the spray particles. The laminate advantageously and surprisingly exhibits high resistance to abrasive wear (for example by a particle) because the layer can avoid the attack by the particle by plastic deformation and closure of the pores, whereby abrasive removal of the layer is advantageously low. The cold gas-sprayed layer is used as a protective layer against abrasive wear.
Abstract:
A bogie shaft for railway vehicles has a cladding which contains a metal component. The metal component is preferably electrochemically less refined, but no greater than exactly as refined, as a material of the bogie shaft. Corrosion on the bogie shaft can thereby be advantageously prevented. The metal material of the cladding is also able to effectively protect the bogie shaft against stone impact. The cladding can be advantageously applied by cold gas spraying, or a sleeve can be bent around the bogie shaft for forming the cladding. The cladding can advantageously contain particles that can make it more resistant to stone impact. The particles can be made, for example, of hard materials, of particularly ductile particles, or of particles made of a memory shape alloy.
Abstract:
A gas heating device is connected to a stagnation chamber having a Laval nozzle discharging a gas stream with incorporated particles at an ultrasonic speed, thus forming a cold gas spraying system capable of coating a surface by the accelerated particles. To achieve an better layer quality, at least one section of the cold gas spraying system, downstream of the gas heating device, is thermally protected by lining or forming the internal wall of the section with a ceramic insulation material having a heat conductivity of less than 20 W/Km to separate the internal wall of the section from the gas stream. A sleeve may be used, a portion of which is cylindrical and another portion which is a truncated conical section; the cylindrical section being inserted into the stagnation chamber and the conical section being inserted into the convergent subsection of the Laval nozzle.
Abstract translation:气体加热装置连接到具有拉伐尔喷嘴的停滞室,拉伐喷嘴以超声波速度排出具有结合的颗粒的气流,从而形成能够通过加速颗粒涂覆表面的冷气喷射系统。 为了获得更好的层质量,在气体加热装置的下游的冷气喷射系统的至少一个部分通过衬里或形成具有热传导率小于的陶瓷绝缘材料的部分的内壁进行热保护 20 W / Km,以将该部分的内壁与气流分离。 可以使用套筒,其一部分是圆柱形的,另一部分是截头圆锥形部分; 圆柱形部分插入停滞室中,锥形部分插入拉瓦尔喷嘴的收敛部分。
Abstract:
An apparatus for the inspection of the heat shield of a space shuttle has a drive so that it can automatically undertake an examination of the tiles of the heat shield. The apparatus moves over the surface with the aid of the drive, and images of the region to be inspected are produced with the aid of a camera. For these images, the tiles are illuminated subsequently by light sources from different directions, as a result of which the tiles can be reliably evaluated with regard to possible defects.
Abstract:
In a method and apparatus for the optical inspection of a matt surface of an object, the surface having a random texture, for example a tile (11) to find cracks (12), in a first step digital images of the surface are created by an image sensor (K) whereby the surface is illuminated from different directions by light sources (B). In a second step sub-images of the regions of interest are created from the images. In a third step the cracks are detected in the sub-images by digital image processing, generating abnormality sub-charts showing the putative cracks. In a fourth step for each region of interest a joint abnormality chart is generated by fusion of the sub-charts and in a fifth step the cracks are detected in each of the joint abnormality charts of each region of interest.
Abstract:
An apparatus for the inspection of the heat shield of a space shuttle has a drive so that it can automatically undertake an examination of the tiles of the heat shield. The apparatus moves over the surface with the aid of the drive, and images of the region to be inspected are produced with the aid of a camera. For these images, the tiles are illuminated subsequently by light sources from different directions, as a result of which the tiles can be reliably evaluated with regard to possible defects.
Abstract:
In a method for cold gas spraying a layer, coating particles are accelerated in a cold spraying nozzle. The particles have a plastic encapsulation. In said manner, the plastic is precipitated onto the substrate together with the metal material, thereby forming in particular layer compositions having good sliding properties, dirt repellent properties, or lubricating properties. The coating can be used as a bearing component of a sliding bearing, as a flow component, in particular as a rotor blade of wind power plants or body components of transportation vehicle, or as trim components of structures.
Abstract:
In a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by cold gas spraying, the method has the steps of: producing a reactive gas flow (5) having at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow having reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.