Abstract:
A method and apparatus for protecting and authenticating wirelessly transmitted digital information using numerous techniques. The apparatus may be a wireless orthogonal frequency division multiplexing (OFDM) communication system, a base station, a wireless transmit/receive unit (WTRU), a transmitter, a receiver and/or an integrated circuit (IC). The wireless OFDM communication system includes a transmitter which steganographically embeds digital information in an OFDM communication signal and wirelessly transmits the OFDM communication signal. The system further includes a receiver which receives the OFDM communication signal and extracts the steganographically embedded digital information from the received OFDM communication signal.
Abstract:
Method and apparatus delivering voice/data services within a piconet operating over a limited range or over a WLAN communicating with 3GPP devices by reformatting data into IP format before delivering to the WLAN. The service is short message service (SMS). Upon receipt of an SMS message, relevant routing information is retrieved. A PDGW address for the SMS message is identified and is sent to the PDGW address which identifies the WLAN user equipment (UE) for receiving the SMS and reformats the SMS message into IP format (text or encapsulation) for delivery to the UE. A protocol architecture is provided for SMS delivery over WLANs, in particular, for UMTS/CDMA based SMS over WLAN through two alternative mechanisms, i.e., SMS tunneling and SMS proxy, for protocols for the delivery of SMS across the WLAN. The invention enhances standard 802.11 in the context of UMTS and CDMA 2000; as well as other scenarios.
Abstract:
An improved system for minimizing toll charges is disclosed wherein line quality is measured and a call is terminated if the line quality is not at an acceptable level to allow for the highest possible bit rates during data transfer or to guarantee a certain minimum degree of quality.
Abstract:
A tone blocking system and method for use preferably in conferencing systems in order to prevent control tones from being transmitted to other conferees is disclosed. The buffer length used to process the signal and detect tones is varied, being increased when a tone is suspected to allow for sophisticated tone detection algorithms, and being decreased when silence is present by trimming the silence away. The technique minimizes delay, and its degrading effect on echo, but nonetheless provides for a lengthy buffer required to do reliable tone detection. The invention is applicable to any signal other than tone as well.
Abstract:
A method and apparatus for enhancing communication services in an evolved global system for mobile communications (GSM)/enhanced data rates for GSM evolution (EDGE) radio access network (GERAN) are disclosed. At least one full rate physical channel and/or half rate physical channel are provided to support communication services that do not require higher order modulation (HOM), and at least one fractional rate physical channel is provided to support the communication services that require HOM. The fractional rate channel occupies N timeslots for every M frames of a channel, whereby N/M is less than one half. The fractional rate channel may be used when communication services are provided on a channel that uses either 16 or 32 quadrature amplitude modulation (QAM) in a dual transfer mode (DTM) session. The communications services include at least one of voice communication services, circuit switched (CS) services and supplementary services.
Abstract:
A wireless communication method and system for performing bit-interleaved coded modulation and iterative decoding. The system includes a transmitter and a receiver. The transmitter encodes incoming bits to generate coded bits, punctures the coded bits in accordance with a predetermined puncturing pattern to generate surviving channel bits and stolen bits and interleaves the surviving bits into interleaved surviving bits. The interleaved surviving bits are mapped to channel symbols and the stolen bits are interleaved to generate interleaved stolen bits. At least one of a plurality of antennas is selected to transmit the channel symbols based on the value of the interleaved stolen bits. The receiver receives the transmitted channel symbols, estimates a posteriori probability for both the channel symbols and the stolen bits, and retrieves information of the stolen bits by determining the selected antenna used to transmit the channel symbols.
Abstract:
A system and method for supporting mobile Internet communication is provided which employs a plurality of Routers and a plurality of Mobile Nodes (MNs). Each Router has a unique communication address. Each MN is associated with a home Router. Each Router has an associated Mobile Node Location List identifying each MN for which the Router is the home Router and the communication address of a Router corresponding to a current location of each such MN. Each MN is movable from an old location where the MN communicates with the Internet via one Router to a current location where the MN communicates with the Internet via a different Router. Communication at the current location via the different Router is established by communicating to the MN's home Router the communication address of the different Router as the communication address corresponding to the MN's current location. Accordingly, a data communication from a corresponding node (CN) to a selected MN is communicated to the selected MN by accessing the Mobile Node Location List of the selected MN's home Router to determine the communication address corresponding to the selected MN's current location and directing the data communication to that determined communication address.
Abstract:
In a wireless communication system comprising at least one wireless transmit/receive unit (WTRU), a base station, and a radio network controller (RNC), a method for constant envelope orthogonal frequency division multiplexing (CE-OFDM) modulation comprises the WTRU performing an inverse transform on the data. The WTRU next performs constant envelope (CE) modulation on the data and transmits the CE-OFDM data to the base station. The base station receives the data and CE demodulates the data. The base station performs a transform on the demodulated data.
Abstract:
Classes of cognition models which may include: 1) Radio Environment models, 2) Mobility models and 3) Application/User Context models are utilized in a wireless communications network. Radio Environment models represent the physical aspects of the radio environment, such as shadowing losses, multi-path propagation, interference and noise levels, etc. Mobility models represent users motion, in terms of geo-coordinates and/or logical identifiers, such as street names etc. as well as speed of user terminal etc. The context model represents the present state and dynamics of each of these application processes within itself and between multiple application processes. These data are employed to optimize network performance.
Abstract:
A method for reducing overhead when transmitting an Internet Protocol (IP) packet begins by selecting a watermarking signature based on the IP address of the packet. The watermarking signature is applied to the packet and the IP address is removed from the packet. The packet is sent to a receiver, which looks up the IP address of the packet by using the watermarking signature. The watermarking signature can be a radio frequency watermarking signature or a digital watermarking signature. A similar method employing watermarking can be used to reduce medium access control header overhead.