摘要:
A processor having a conditional branch extension of an instruction set architecture which incorporates a set of high performance floating point operations. The instruction set architecture incorporates a variety of data formats including single precision and double precision data formats, as well as the paired-single data format that allows two simultaneous operations on a pair of operands. The extension includes instructions directed to branching if, for example, either one of two condition codes is false or true, if any of three condition codes are false or true, or if any one of four condition codes are false or true.
摘要:
A cache coherency system for an on-chip computing bus is provided. The coherency system contains a coherency credit counter within each master device on the on-chip bus for monitoring the resources available on the bus for coherent transactions, a coherency input buffer for storing coherent transactions, and a cache for storing coherent data. The coherency credit counter tracks coherent transactions pending in a memory controller, and delays coherent transactions from being placed on the bus if coherent resources are not available in the memory controller. When resources become available in the memory controller, the memory controller signals the coherency system in each of the master devices. The coherency system is coupled to a split transaction tracking and control to establish transaction ID's for each coherent transaction initiated by its master device, and presents a transaction ID along with an address portion of each coherent transaction.
摘要:
In an information processing system which has plurality of modules including a processor, a main memory and a plurality of I/O devices, a data transfer switch for performing data transfer operations between the processor, main memory and I/O devices comprises a request bus which has a request bus arbiter for receiving read and write requests from each one of the plurality of modules. A processor memory bus is configured to receive address and data information from a predetermined number of modules, including the processor. The processor memory bus has a data bus arbiter for receiving data read and write requests from each one of the predetermined number of modules which are coupled to the processor memory bus. An internal memory bus is configured to receive address and data information from a predetermined number of modules, including the memory and the I/O devices. The internal memory bus has a data bus arbiter for receiving data read and write requests from each one of the predetermined number of modules coupled to the internal memory bus. A transceiver system is coupled to the processor memory bus and the internal memory bus for transferring data between the processor memory bus and the internal memory bus.
摘要:
A computer readable storage medium includes executable instructions to characterize a coherency controller. The executable instructions define ports to receive processor trace information from a set of processors. The processor trace information from each processor includes a processor identity and a condensed coherence indicator. Circuitry produces a trace stream with trace metrics and condensed coherence indicators.
摘要:
A processor-based method, system and apparatus to comprise a method, system and apparatus to access a memory location in an on-chip memory based on a virtual processing element identification associated with an instruction. The system comprises multiple virtual processing elements, an access list and a comparator coupled to the memory and the access list. In response to an instruction from a virtual processing element to access a memory location in the memory, the comparator compares a first virtual processing identification associated with the instruction to a second virtual processing identification stored in the access list and grants access to the virtual processing element that generated the instruction to read from or write to the memory location if the first virtual processing element identification is equal to the second virtual processing element identification. The data in the memory is allocated and de-allocated by software.
摘要:
A configurable coprocessor interface between a central processing unit (CPU) and a coprocessor is provided. The coprocessor interface has an instruction transfer signal group for transferring different instruction types from the CPU to the coprocessor, sequentially or in parallel, a busy signal group, for allowing the coprocessor to signal the CPU that it cannot receive a transfer of one or more of the different instruction types, and an instruction order signal group for indicating to the coprocessor a relative execution order for multiple instructions that are transferred in parallel. In addition, the coprocessor interface includes separate data transfer signal groups for data being transferred from the CPU to the coprocessor, and for data being transferred from the coprocessor to the CPU, along with a data order signal group for indicating a relative order of data (if transferred out-of-order). The interface further includes signal designations which allow for multiple issue groups between the CPU and one or more coprocessors.
摘要:
A RISC processor having a data mover engine and instructions that associate register addresses with memory addresses. In an embodiment, the instructions include a read-tie instruction, a single write-tie instruction, a dual write-tie instruction, and an untie instruction. The read-tie, single write-tie, and dual write-tie instructions are used to associate software accessible register addresses with memory addresses. These associations effect the operation of the data mover engine such that, for the duration of the associations, the data mover engine routes data to and from associated memory addresses and the execution unit of the processor in response to instructions that specify moving data to and from the associated register addresses. The invention reduces the number of instructions and hardware overhead associated with implementing program loops in a RISC processor.
摘要:
A RISC processor having a data moving engine and instructions that associate register addresses with memory addresses. In an embodiment, the instructions include a read-tie instruction, a single write-tie instruction, a dual write-tie instruction, and an untie instruction. The read-tie, single write-tie, and dual write-tie instructions are used to associate software accessible register addresses with memory addresses. These associations effect the operation of the data moving engine such that, for the duration of the associations, the data moving engine routes data to and from associated memory addresses and the execution unit of the processor in response to instructions that specify moving data to and from the associated register addresses. The invention reduces the number of instructions and hardware overhead associated with implementing program loops in a RISC processor.
摘要:
A configurable coprocessor interface between a central processing unit (CPU) and a coprocessor is provided. The coprocessor interface has an instruction transfer signal group for transferring different instruction types from the CPU to the coprocessor, sequentially or in parallel, a busy signal group, for allowing the coprocessor to signal the CPU that it cannot receive a transfer of one or more of the different instruction types, and an instruction order signal group for indicating to the coprocessor a relative execution order for multiple instructions that are transferred in parallel. In addition, the coprocessor interface includes separate data transfer signal groups for data being transferred from the CPU to the coprocessor, and for data being transferred from the coprocessor to the CPU, along with a data order signal group for indicating a relative order of data (if transferred out-of-order). The interface further includes signal designations which allow for multiple issue groups between the CPU and one or more coprocessors.
摘要:
A configurable coprocessor interface between a central processing unit (CPU) and a coprocessor is provided. The coprocessor interface has an instruction transfer signal group for transferring different instruction types from the CPU to the coprocessor, sequentially or in parallel, a busy signal group, for allowing the coprocessor to signal the CPU that it cannot receive a transfer of one or more of the different instruction types, and an instruction order signal group for indicating to the coprocessor a relative execution order for multiple instructions that are transferred in parallel. In addition, the coprocessor interface includes separate data transfer signal groups for data being transferred from the CPU to the coprocessor, and for data being transferred from the coprocessor to the CPU, along with a data order signal group for indicating a relative order of data (if transferred out-of-order). The interface further includes signal designations which allow for multiple issue groups between the CPU and one or more coprocessors.