Abstract:
Calibrating return time includes determining clock calibration information based on clock signals local to a master device and return clock signals corresponding to each of at least two slave devices, storing clock calibration information with respect to each of the slave devices with which the master device will communicate using a bus, and, after the clock calibration information has been stored, resynchronizing data signals that are received from each of the slave devices based on the corresponding stored clock calibration information.
Abstract:
The method of networking comprises connecting a first coupler to a first and second transmission line to couple the first and second transmission lines, connecting a second coupler to the second and a third transmission line to couple the second and third transmission lines, connecting a third coupler to the first and third transmission line to couple the first and third transmission lines, connecting a first end of the first transmission line to a first digital device, connecting a first end of the second transmission line to a second digital device, and connecting a first end of the third transmission line to a third digital device. A signal is transmitted through the first, second, or third transmission line, by one of the digital devices, and is received by at least one digital device different from the transmitting digital device.
Abstract:
The present invention provides a mechanism for combining programming signals to provide an output signal, the properties of which depend only on selected properties of the programming signals. An embodiment of the invention includes first and second edge-to-pulse converters. The first edge-to-pulse converter generates an intermediate signal having a width determined by received initiation and termination signals. The second edge-to-pulse converter generates an output signal, responsive to the intermediate signal and the termination signal. The output signal has a width determined by a first edge of the initiation signal and a first edge of the termination signal.
Abstract:
The present invention provides an apparatus for transferring data through an electromagnetic coupler. The apparatus comprises a transmitter to encode a first plurality of bits into a symbol, a receiver to decode a transferred symbol into a second plurality of bits; and a coupling element having a geometry that provides robust electromagnetic transfer of the symbol and the transferred symbol. For one embodiment of the apparatus, the coupling element has a zig-zag geometry.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
An electromagnetic (EM) coupler including a first transmission structure having a first geometry, and a second transmission structure having a second geometry and forming an EM coupler with the first transmission structure, the first and second geometries being selected to reduce sensitivity of EM coupling to relative positions of the first and second transmission structures is disclosed.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
A system includes a first bus coupler element, a second bus coupler element, and a visual element associated with the second bus coupler element and including a transparent media enabling the second coupler element to be visually aligned with the first coupler element.
Abstract:
Calibrating return time includes determining clock calibration information based on clock signals local to a master device and return clock signals corresponding to each of at least two slave devices, storing clock calibration information with respect to each of the slave devices with which the master device will communicate using a bus, and, after the clock calibration information has been stored, resynchronizing data signals that are received from each of the slave devices based on the corresponding stored clock calibration information.
Abstract:
The present invention provides a mechanism for supporting high digital bandwidth in a multi-drop bus system. A first device of the system encodes multiple bits in a symbol and drives the encoded symbol onto the multi-drop bus. Multiple receiving devices are linked to the bus through electromagnetic couplers. A receiving device samples the encoded symbol through the electromagnetic coupler and recovers the encoded bits from the sampled symbol.