Abstract:
A process is provided for reducing the content of a monounsaturated aliphatic amine (III) in a mixture (IV) containing an aminonitrile (I) or a diamine (II), or mixtures thereof, and the amine (III), wherein a) the mixture (IV) is reacted with an anionic nucleophile (V), which contains a nucleophilic atom selected from the group comprising oxygen, nitrogen and sulfur, which is capable of taking up an H+ ion to form an acid with a pKa ranging from 7 to 11, measured in water at 25° C., and which has a relative nucleophilicity, measured in methyl perchlorate/methanol at 25° C., ranging from 3.4 to 4.7 when oxygen is the nucleophilic atom, ranging from 4.5 to 5.8 when nitrogen is the nucleophilic atom, and ranging from 5.5 to 6.8 when sulfur is the nucleophilic atom, in an amount ranging from 0.01 to 10 mol per mole of amine (III) in the mixture (IV), to give a mixture (VI), and b) the aminonitrile (I) or the diamine (II), or mixtures thereof, are distilled from the mixture (VI) at a temperature ranging from 50 to 170° C. and a pressure ranging from 0.5 to 100 kPa.
Abstract:
The continuous process for preparing a polyamide by reacting at least one aminonitrile with water comprises: (1) reacting at least one aminonitrile with water in the presence of an organic liquid diluent at from 90 to 400° C. and from 0.1 to 35×106 Pa in a flow tube containing a Brönsted acid catalyst selected from a beta-zeolite catalyst, a sheet-silicate catalyst or a titanium dioxide catalyst comprising from 70 to 100% by weight of anatase and from 0 to 30% by weight of rutile and in which up to 40% by weight of the titanium dioxide may be replaced by tungsten oxide, to obtain a reaction mixture, (2) further reacting the reaction mixture at from 150 to 400° C. and a pressure which is lower than the pressure in stage 1 in the presence of a Brönsted acid catalyst selected from a beta-zeolite catalyst, a sheet-silicate catalyst or a titanium dioxide catalyst comprising from 70 to 100% by weight of anatase and from 0 to 30% by weight of rutile and in which up to 40% by weight of the titanium dioxide may be replaced by tungsten oxide, the temperature and pressure being selected so as to obtain a first gas phase and a first liquid phase or a first solid phase or a mixture of first solid and first liquid phases and so that the first gas phase is separated from the first liquid phase or first solid phase or from the mixture of first liquid and first solid phases, and (3) admixing the first liquid or the first solid phase or the mixture of first liquid and first solid phases with a gaseous or liquid phase comprising water at from 150 to 370° C. and from 0.1 to 30×106 Pa, to obtain a product mixture.
Abstract:
A process for producing 1,6-hexanediol by hydrogenation of adipic esters and/or 6-hydroxycaproic esters in the gas phase at elevated temperature and elevated pressure in the presence of chromium-free catalysts comprises hydrogenating a) over a catalyst comprising copper, manganese and aluminum as essential constituents or over Raney copper, b) at a temperature of from 150 to 230° C. and a pressure of from 10 to 70 bar, c) at a molar ratio of hydrogen to ester to be hydrogenated within the range from 150:1 to 300:1, and d) at a catalyst space velocity of from 0.01 to 0.3 kg of C6 ester per liter of catalyst per hour.
Abstract:
A process for preparing an NH.sub.2 -containing compound by hydrogenating a compound containing at least one unsaturated carbon-nitrogen bond with hydrogen in the presence of a catalyst at temperatures not below room temperature and elevated hydrogen partial pressure in the presence or absence of a solvent which process includes the following steps: a) using a catalyst comprising a cobalt- and/or iron-containing catalyst, and b) after the conversion based on the compound to be hydrogenated and/or the selectivity based on the desired product has or have dropped below a defined value or the amount of an unwanted by-product has risen beyond a defined value, interrupting the hydrogenation by stopping the feed of the compound to be hydrogenated and of the solvent, if used, c) treating the catalyst at from 150.degree. to 400.degree. C. with hydrogen using a hydrogen pressure within the range from 0.1 to 30 MPa and a treatment time within the range from 2 to 48 h, and d) subsequently continuing the hydrogenation of the compound containing at least one unsaturated carbon-nitrogen bond.
Abstract:
A catalyst for the hydrogenation of C4-dicarboxylic acids and/or derivatives thereof, preferably maleic anhydride, in the gas phase comprises a) 20-94% by weight of copper oxide (CuO), preferably 40-92% by weight of CuO, in particular 60-90% by weight of CuO, and b) 0.005-5% by weight, preferably 0.01-3% by weight, in particular 0.05-2% by weight, palladium and/or a palladium compound (calculated as metallic palladium) and c) 2-79.995% by weight, preferably 5-59.99% by weight, in particular 8-39.95% by weight, of an oxidic support selected from the group consisting of the oxides of Al, Si, Zn, La, Ce, the elements of groups IIIA to VIIIA and of groups IA and IIA of the Periodic Table of the Elements.
Abstract:
A process for preparing toluene derivatives of the formula I, where R1, R2 and R3 independently of one another are hydrogen, halogen, C1–C6-alkyl, hydroxyl or C1–C6-alkoxy, by hydrogenating benzaldehydes and/or benzyl alcohols of the formula II, with hydrogen in the presence of a catalyst, which is described in more detail in the description.
Abstract:
The present invention provides a process for hydrogenating carbonyl compounds, in particular C4-dicarboxylic acids to mixtures of tetrahydrofuran and gamma-butyrolactone, over supported rhenium catalysts, wherein rhenium and at least one further metal of groups VIII or Ib of the Periodic Table of the Elements, in particular ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), copper (Cu), silver (Ag) or cobalt (Co), is applied to the support in the form of at least one bimetallic precursor compound, and also to these catalysts.
Abstract:
An oxidic composition which is suitable as a catalyst having divalent and trivalent iron in an atomic ratio of divalent to trivalent iron in the range from greater than 0.5 to 5.5 and oxygen as a counterion to the divalent and trivalent iron. The catalyst composition is useful in the hydrogenation of nitriles to amines.
Abstract:
The invention relates to a process for preparing optically active 2-amino-, 2-chloro-, 2-hydroxy- or 2-alkoxy-1-alcohols by catalytically hydrogenating appropriate optically active 2-amino-, 2-chloro-, 2-hydroxy- and 2-alkoxycarboxylic acids or their acid derivatives in the presence of catalysts comprising palladium and rhenium or platinum and rhenium.
Abstract:
The invention relates to a catalyst containing from 0.1 to 20 mass % rhenium and 0.05 to 10 mass % platinum in relation to the total mass thereof. The inventive method for producing a support for said catalyst consists in a) treating a support which can be eventually pre-treated with the aid of a solution of rhenium compound, b) drying and annealing said support at a temperature ranging from 80 to 600° C., and c) impregnating the support with a solution of platinum compound and in drying it. The inventive method for producing alcohol by catalytic hydrogenation of carbonyl compound on said catalyst is also disclosed.