Abstract:
A protection device is provided for protecting a switching device that is able to control a current through an inductive load which is subject to a supply voltage, by switching a first and a second terminal of the inductive load to the respective pole of the supply voltage. The switching device is under control of a switching control device. The switching control device operates based on a predetermined algorithm. The switching device also includes flyback body diodes. The protection device includes measuring means for measuring a voltage level on a terminal of the load, and decision means for making a decision on switching the first terminal of the load if the measured voltage level exceeds the supply voltage. The protection device also includes instructing means for instructing the switching control device based on the decision for switching a first terminal of the load.
Abstract:
A process for estimating a speed of movement of a mobile terminal operating in a wireless communication system and communicating with a base station via a transmission channel includes estimating fading of the transmission channel, and performing an autocorrelation on the fading for providing a first autocorrelation result. Reference autocorrelation results are calculated for predetermined values of speed of movement of the mobile terminal, with the calculating being based upon a known autocorrelation function performed on the fading. The process further includes comparing the first autocorrelation result to the various reference autocorrelation results, and estimating the speed of movement of the mobile terminal based upon the comparison.
Abstract:
Estimating the speed of movement of a mobile terminal of a wireless communication system communicating with a base station includes calculating a normalized auto-covariance of the instantaneous power of the signal received by the mobile terminal or by the base station.
Abstract:
The transmission power of a cellular mobile telephone is adjusted as a function of received power information. The celluar mobile telephone is equipped with a variable-gain amplifier that covers the transmission power range, and the gain and supply voltage of the amplifier are tuned as a function of the received power information.
Abstract:
A first estimate is made of the impulse response of the channel considered as a whole, then this first estimate is corrected independently of the information transmitted for obtaining a corrected final estimate of the impulse response of the channel. This is done by taking account of the fact that the impulse response of the sender and the impulse response of the receiver are known.
Abstract:
Interpolator and decimator apparatuses and methods are improved by the addition of an elastic storage element in the signal path. In one exemplary embodiment, the elastic element comprises a FIFO which advantageously allows short term variation in sample clocks to be absorbed, and also provides a feedback mechanism for controlling a delta-sigma modulated modulo-N counter based sample clock generator. The elastic element combined with a delta-sigma modulator and counter creates a noise-shaped frequency lock loop without additional components, resulting in a much simplified interpolator and decimator.
Abstract:
A method is for decoding a pulse signal modulated through a transmitted reference modulation scheme. The modulated pulse signal may include, repetitively, a reference pulse followed by an information pulse delayed with a delay. The method may include subtracting or adding from the modulated pulse signal, a version of the modulated pulse signal delayed with the delay for obtaining a processed signal, and performing a non-coherent detection on the processed signal.
Abstract:
A two terminal device which can be used for the rectification of the current. Internally it has a regenerative coupling between MOS gates of opposite type and probe regions. This regenerative coupling allows to achieve performance better than that of ideal diode.
Abstract:
In a particular embodiment using a distributed architecture, the electronic device comprises a source memory means partitioned in N elementary source memories for storing a sequence of input data, processing means clocked by a clock signal and having N outputs for producing per cycle of the clock signal N data respectively associated to N input data respectively stored in the N elementary source memories at relative source addresses, N single port target memories, N interleaving tables containing for each relative source address the number of one target memory and the corresponding relative target address therein, N cells connected in a ring structure, each cell being further connected between one output of the processing means, one interleaving table, and the port of one target memory, each cell being adapted to receive data from said output of the processing means and from its two neighbouring cells or to write at least some of these received data sequentially in the associated target memory, in accordance with the contents of said interleaving tables.
Abstract:
A direct-conversion receiver includes an analog stage for receiving an incident signal from a transmission channel, mixers and programmable-gain amplifiers. The receiver further includes at least one compensation module having input and output terminals respectively connected between the output of the mixers and the input of the programmable-gain amplifiers. The compensation module compensates for both a static DC voltage offset and a possible dynamic DC voltage offset of the analog stage.