Abstract:
A method, apparatus and system for extended wireless communication include an airborne platform including at least one antenna to pick up and radiate wireless signals, a platform controller to control the altitude and attitude of the airborne platform, and a communication payload. In an embodiment, the communication payload includes at least two transponders to establish wireless links and a controller having a processor and a memory coupled to the processor. In some embodiments, the memory has stored therein instructions executable by the processor to cause the airborne communication system to elevate the airborne platform to an altitude at which wireless connectivity is able to be established with a first wireless network, establish a first wireless link to the first wireless network, establish a second wireless link, and relay data between the first wireless link and the second wireless link.
Abstract:
An aircraft assembly includes at least one first wing portion providing a lift force during a horizontal flight, at least one wing opening disposed on a vertical axis of the at least one first wing portion, at least one vertical thruster positioned inside the at least one wing opening to provide vertical thrust during a vertical flight, and a mounting system including an open frame portion in a frame of the aircraft and at least one attachment member disposed in the open frame portion to attach at least one pod to the open frame portion in the aircraft frame. The aircraft assembly can further include at least one pod including a mounting frame to attach to the mounting system and a cabin to contain at least one of cargo and passengers.
Abstract:
Embodiments of methods and apparatus for close formation flight are provided herein. In some embodiments, an apparatus for close formation flight, comprises a plurality of sensors for collecting measurements characterizing airflow near an aircraft. The plurality of sensors are attachable to at least one of a wing, fuselage, or tail of the aircraft, and the measurements provide information about airflow velocity in a direction transverse to a direction of the aircraft flight.
Abstract:
A mobile system includes a self-supporting platform, a tunable anti-reflective (AR) skin or film disposed on and secured to the mobile platform, one or more actuators and a controller. The tunable AR skin or film includes one or more layers that are at least partially transmitting to optical energy at one or more optical wavelengths. The skin or film is substantially flexible and/or stretchable and has an optical AR to incident electromagnetic radiation of a given wavelength which is selectively variable when flexed and/or stretched. The actuators are able to flex and/or stretch the skin or film in response to receipt of a control signal. The controller generates the control signal based on a measured value of the electromagnetic radiation transmitted through the tunable AR skin or film.
Abstract:
Embodiments of methods and apparatus for close formation flight are provided herein. In some embodiments, a method of sensing three dimensional (3D) airflow by an aircraft includes: collecting measurements characterizing airflow near the aircraft; analyzing the collected measurements; creating, by a processor, a computer model predicting one or more 3D airflow patterns parameter values based on the analyzing; obtaining one or more additional measurements characterizing airflow near an aircraft of the plurality of aircraft, and evaluating an error between an airflow parameter value predicted by the computer model and the one or more additional measurement.
Abstract:
A stretchable photovoltaic device, a stretchable photovoltaic module and a carrier for facilitating formation of a stretchable photovoltaic device and/or module are provided. The stretchable photovoltaic device includes a stretchable part, at least one photovoltaic cell and a surface over which that at least one photovoltaic cell is disposed. The stretchable part has a given length that is operable to change in response to a force being applied to the device. The given length may, for example, elongate when the force causes the device to elongate. Alternative and/or additionally, the given length may compress when the force causes the device to compress.
Abstract:
A photovoltaic device is provided which includes a plurality of junction layers. Each junction layer includes a plurality of photovoltaic cells electrically connected to one another. At least one of the junction layers is at least in part optically transmissive. The junction layers are arranged in a stack on top of each other.
Abstract:
Methods and apparatus are provided for using a renewable source of energy such as solar, wind, or geothermal energy. In some embodiments, the method may include generating electric energy from a renewable form of energy at a plurality of locations at which reside an electric power line associated with an electric power grid. The electric energy generated at each location may be transferred to the electric power line to thereby supply electric energy to the electric power grid.
Abstract:
Embodiments of methods and apparatus for close formation flight are provided herein. In some embodiments, a method for establishing situational awareness during formation flight includes exchanging transponder signals between at least two aircraft, establishing two-way communication links between the at least two aircraft, exchanging telemetry data between the at least two aircraft, and assigning the roles of a leader and a follower to the aircraft.
Abstract:
Methods and apparatus to harvest renewable energy are provided herein. In some embodiments, a wind-powered aircraft includes an airframe suitable for untethered flight in an open airspace; and an airborne kinetic energy conversion system attached to the airframe, the airborne kinetic energy conversion system comprising a turbine, a generator connected to the turbine, and an energy storage means connected to the generator.