Abstract:
A method for forming a high purity, copper indium gallium selenide (CIGS) sputtering target is disclosed. The method includes sealing precursor materials for forming the bulk material in a reaction vessel. The precursor materials include copper, at least one chalcogen selected from selenium, sulfur, and tellurium, and at least one element from group IIIA of the periodic table, which may be selected from gallium, indium, and aluminum. The sealed reaction vessel is heated to a temperature at which the precursor materials react to form the bulk material. The bulk material is cooled in the vessel to a temperature below the solidification temperature of the bulk material and opened to release the formed bulk material. A sputtering target formed by the method can have an oxygen content of 10 ppm by weight, or less.
Abstract:
Embodiments of methods for providing distributed airborne wireless communications are provided herein. In some embodiments, a method of providing wireless communication services includes: receiving a radio frequency (RF) signal from a first area by a distributed airborne communication payload, wherein the distributed airborne communication payload is comprised of sections located on respective ones of a plurality of airborne platforms; relaying the RF signal along the sections located on different airborne platforms; and transmitting the RF signal to a second area.
Abstract:
A multi-functional, multi-layer film or skin which may be used as a covering for a structure or platform incorporates an integrated photovoltaic element and an integrated RF antenna element. The film or skin is suitable for use in various applications, including those involving autonomous, self-powered, mobile communication systems and especially for use as a skin or covering for solar powered aircraft and UAVs. Planar PV cells and planar RF antenna are used to facilitate their integration into the film or skin. The PV cells and RF antenna are configured to face operate outward from opposite faces of the skin. The film or skin addresses potential problems arising from conflicting directional requirements for PV orientation and antenna pointing on mobile platforms. This is accomplished by employing wide angle AR coatings on the PV elements and electrical controls to steer the RF antenna.
Abstract:
Embodiments of methods and apparatus for providing distributed airborne wireless communications are provided herein. In some embodiments, an airborne wireless communication node includes: an airborne fleet comprising a plurality of airborne platforms having flight control electronics configured to control flight of individual airborne platforms and coordinate a flight plan of the airborne fleet as a whole; and a distributed communication payload, wherein the communication payload is subdivided into constituent parts, wherein the parts are distributed and positioned on respective ones of the plurality of airborne platforms. In some embodiments, the distributed communication payload includes: air-to-user link equipment to provide communication links with end-users, the air-to-user link equipment further comprising an RF antenna; air-to-air link equipment to provide communications between individual airborne platforms; and payload control electronics to control the air-to-user and air-to-air link equipment and managing communication services.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.
Abstract:
A method of: providing one or more spent sputtering targets comprising a photovoltaic compound and grinding the photovoltaic compound in an inert environment to form a powder.
Abstract:
A laminate film includes a plurality of planar photovoltaic semi-transparent modules disposed one on top of another and laminated to each other. Each of the modules includes a substrate, first and second conductive layers and at least first and second semiconductor layers disposed between the conductive layers. The first and second semiconductor layers define a junction at an interface therebetween. At least one of the junctions is configured to convert a first spectral portion of optical energy into an electrical voltage and transmit a second spectral portion of optical energy to another of the junctions that is configured to convert at least a portion of the second spectral portion of optical energy into an electrical voltage.
Abstract:
Embodiments of methods and apparatus for close formation flight are provided herein. In some embodiments, a method of sensing three dimensional (3D) airflow by an aircraft includes: collecting measurements characterizing airflow near the aircraft; analyzing the collected measurements; creating, by a processor, a computer model predicting one or more 3D airflow patterns parameter values based on the analyzing; obtaining one or more additional measurements characterizing airflow near an aircraft of the plurality of aircraft, and evaluating an error between an airflow parameter value predicted by the computer model and the one or more additional measurement.
Abstract:
An ice resistant structure is provided which includes a self-supporting, structural platform, a retaining, protective layer and a subsurface anti-icing (AI) and/or de-icing (DI) layer. The retaining, protective layer is disposed over the self-supporting, structural platform. The subsurface anti-icing (AI) and/or de-icing (DI) layer is located between the self-supporting, structural platform and the retaining, protective layer. The subsurface Al and/or DI layer is a functional layer such that an Al and/or DI agent is released to a surface of the retaining protective layer by an activation mechanism responsive to a change in an environmental condition.
Abstract:
A multilayer film or skin for free space optical data transmission includes a first outer layer. The first outer layer has a first laterally extending area that transmits optical data signals received over a range of incident angle. A second layer that includes a second laterally extending area underlies the first layer. At least a portion of the optical data signals received by the second layer from the first outer layer is focused or otherwise concentrated into a substantially reduced area. An optical detector receives the concentrated optical data signals from the second layer. An electrical connection extends from the optical detector to an external receiving device. The multilayer film or skin may be used, for example, in applications involving mobile free space optical communication platforms where low profile, volume and mass and/or enhanced platforms are important.