Abstract:
A method for forming a high purity, copper indium gallium selenide (CIGS) sputtering target is disclosed. The method includes sealing precursor materials for forming the bulk material in a reaction vessel. The precursor materials include copper, at least one chalcogen selected from selenium, sulfur, and tellurium, and at least one element from group IIIA of the periodic table, which may be selected from gallium, indium, and aluminum. The sealed reaction vessel is heated to a temperature at which the precursor materials react to form the bulk material. The bulk material is cooled in the vessel to a temperature below the solidification temperature of the bulk material and opened to release the formed bulk material. A sputtering target formed by the method can have an oxygen content of 10 ppm by weight, or less.
Abstract:
Embodiments of methods and apparatus for close formation flight are provided herein. In some embodiments, a method of sensing three dimensional (3D) airflow by an aircraft includes: collecting measurements characterizing airflow near the aircraft; analyzing the collected measurements; creating, by a processor, a computer model predicting one or more 3D airflow patterns parameter values based on the analyzing; obtaining one or more additional measurements characterizing airflow near an aircraft of the plurality of aircraft, and evaluating an error between an airflow parameter value predicted by the computer model and the one or more additional measurement.
Abstract:
Embodiments of methods for providing distributed airborne wireless communications are provided herein. In some embodiments, a method of providing wireless communication services includes: receiving a radio frequency (RF) signal from a first area by a distributed airborne communication payload, wherein the distributed airborne communication payload is comprised of sections located on respective ones of a plurality of airborne platforms; relaying the RF signal along the sections located on different airborne platforms; and transmitting the RF signal to a second area.
Abstract:
A multi-functional, multi-layer film or skin which may be used as a covering for a structure or platform incorporates an integrated photovoltaic element and an integrated RF antenna element. The film or skin is suitable for use in various applications, including those involving autonomous, self-powered, mobile communication systems and especially for use as a skin or covering for solar powered aircraft and UAVs. Planar PV cells and planar RF antenna are used to facilitate their integration into the film or skin. The PV cells and RF antenna are configured to face operate outward from opposite faces of the skin. The film or skin addresses potential problems arising from conflicting directional requirements for PV orientation and antenna pointing on mobile platforms. This is accomplished by employing wide angle AR coatings on the PV elements and electrical controls to steer the RF antenna.
Abstract:
Embodiments of the present invention provide an alternative distributed airborne transportation system. In some embodiments, a method for distributed airborne transportation includes: providing an airborne vehicle with a wing and a wing span, having capacity to carry one or more of passengers or cargo; landing of the airborne vehicle near one or more of passengers or cargo and loading at least one of passengers or cargo; taking-off and determining a flight direction for the airborne vehicle; locating at least one other airborne vehicle, which has substantially the same flight direction; and joining at least one other airborne vehicle in flight formation and forming a fleet, in which airborne vehicles fly with the same speed and direction and in which adjacent airborne vehicles are separated by distance of less than 100 wing spans.
Abstract:
Embodiments of methods and apparatus for providing distributed airborne wireless communications are provided herein. In some embodiments, a communication fleet includes: an airborne communication payload subdivided into multiple payload sections; and a plurality of airborne platforms each including a payload section, wherein each airborne platform comprises an airframe, a propulsion system, a power system, and flight control electronics, wherein the propulsion system is configured to provide propulsion power and thrust to maintain level flight, ascend, descend and maneuver the airborne platform, wherein the power system provides electrical power to the propulsion system, the flight control electronics, and the payload section, and wherein the flight control electronics provide capability to control a position, speed, and flight pattern of the airborne platform.
Abstract:
Embodiments of methods and apparatus for providing distributed airborne wireless communications are provided herein. In some embodiments, an airborne wireless communication node includes: an airborne fleet comprising a plurality of airborne platforms having flight control electronics configured to control flight of individual airborne platforms and coordinate a flight plan of the airborne fleet as a whole; and a distributed communication payload, wherein the communication payload is subdivided into constituent parts, wherein the parts are distributed and positioned on respective ones of the plurality of airborne platforms. In some embodiments, the distributed communication payload includes: air-to-user link equipment to provide communication links with end-users, the air-to-user link equipment further comprising an RF antenna; air-to-air link equipment to provide communications between individual airborne platforms; and payload control electronics to control the air-to-user and air-to-air link equipment and managing communication services.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.
Abstract:
A method of: providing one or more spent sputtering targets comprising a photovoltaic compound and grinding the photovoltaic compound in an inert environment to form a powder.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.