Abstract:
Disclosed is a silicate phosphor represented by Formula: Lia-xAxSrb-y-z-lByEuzClSic-mDmOd-nEn where A includes at least one ion selected from the group consisting of Na, K, Rb, and Cs. B includes at least one ion selected from the group consisting of Mg, Ca, Ba and Zn. C includes at least one ion selected from the group consisting of Sc, Y, La, Gd, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu and Bi. D includes at least one ion selected from the group consisting of B, Al, Ga, In and Tl. E includes at least one ion selected from the group consisting of F, Cl, Br, and I. Further disclosed is a white light emitting device including the silicate phosphor.
Abstract:
Provided is a laser display device. The laser display device may include at least one light source configured to emit at least one laser beam, at least one scanning unit configured to perform a scanning with the at least one laser beam, and an image forming unit configured to generate excitation light and scattering light by receiving the at least one laser beam from the scanning unit to form an image.
Abstract:
A green phosphor, has an orthorhombic structure of a Pnma space group and the Formula 1: (M11-xDx)pM2qOrAs [Formula 1] wherein M1 is magnesium, calcium, strontium, barium, and any combination thereof, D is at least one of metal selected from the group consisting of europium, manganese, antimony, cerium, praseodymium, neodymium, samarium, terbium, dysprosium, erbium, ytterbium, bismuth, and any combination thereof, M2 is at least one selected from the group consisting of silicon, germanium, aluminum, gallium, and any combination thereof, A is at least one selected from the group consisting of chlorine, fluorine, bromine, iodine, and any combination thereof, and 2.7≦p≦3.3, 0.7≦q≦1.3, 3.5≦r≦4.5, 1.7≦s≦2.3, and 0
Abstract:
Provided is an (oxy)nitride phosphor, which is a compound represented by Formula 1 below: {M(1-x)Eux}aSibOcNd wherein,M is an alkaline earth metal; and0
Abstract:
A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4ΔE*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4ΔE*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
Abstract translation:白色发光二极管包括蓝色发光二极管(“LED”)光源和将来自蓝色LED光源的入射光转换成白光的光转换层。 光转换层包括绿色发光半导体纳米晶体和红色发光半导体纳米晶体。 白色发光二极管具有红色,绿色和蓝色(“RGB”)色彩轨迹,该色彩轨迹位于每个sRGB颜色坐标的恒定色调轨迹内的色度误差范围(±4&Dgr; E * ab) 来自每个AdobeRGB色坐标的恒定色调轨迹的色度误差范围(±4&Dgr; E * ab)。
Abstract:
Disclosed herein are a metal hydroxy carbonate nanoparticle-coated phosphor and a preparation method thereof. The phosphor coated with metal hydroxy carbonate nanoparticles exhibit improved thermal stability and an increased luminance lifespan, when applied to display devices, e.g., PDPs and lamps.
Abstract:
An oxynitride phosphor including: a compound represented by Formula 1: M1a-xM2x-yCeySib-zAlzOc-xNx, Formula 1 wherein M1 is at least one element selected from the group consisting of calcium, strontium, barium, magnesium, zinc, and europium, M2 is at least one element selected from the group consisting of scandium, yttrium, lutetium, lanthanum, praseodymium, samarium, gadolinium, terbium, ytterbium, and dysprosium, and a is about 1.7 to about 2.3, b is about 0.7 to about 1.3, c is about 3.5 to about 4.5, x is greater than 0 and less than about 2, y is greater than 0 and less than about 0.5, and z is equal to or greater than 0 and less than about 0.5.
Abstract:
Provided is a laser display device. The laser display device may include at least one light source configured to emit at least one laser beam, at least one scanning unit configured to perform a scanning with the at least one laser beam, and an image forming unit configured to generate excitation light and scattering light by receiving the at least one laser beam from the scanning unit to form an image.
Abstract:
Provided is a phosphate nano phosphor with a mean particle diameter of 100 to 3000 nm. Also provided is a method of preparing a nano phosphor, the method comprising: dissolving two or more species of metal precursor compounds in water, and then adjusting the pH to prepare an aqueous solution of pH 4-10; coprecipitating the aqueous solution by mixing with a phosphate precursor aqueous solution with the pH adjusted to 7-12; and redispersing the particles obtained from the coprecipitation in water or polyol solvent, and then heat treating the particles. The phosphate nano phosphor according to the present invention has superior light emission efficiency compared with conventional nano phosphors.
Abstract:
Disclosed herein is a method for preparing a nanophosphor from a metal hydroxy carbonate and a nanophosphor prepared by the method. The method is capable of mass-production of a uniform particle-size nanophosphor with superior dispersibility and enables reduction in preparation costs. The nanophosphor prepared by the disclosed method exhibits high luminescence efficiency.