摘要:
In a crystal holding apparatus, a corrugated portion between a seed crystal and a straight cylindrical portion of a monocrystal is held by holding portions of a lifting jig during a monocrystal growth process in which the seed crystal is brought into contact with material melt and is subsequently pulled while being rotated. In the crystal holding apparatus, an attachment member for establishing surface contact with the corrugated portion of the crystal is attached to the tip end of each holding portion of the lifting jig. Therefore, the monocrystal can be held reliably, so that the breaking and falling down of the monocrystal during the pulling operation can be prevented.
摘要:
A MCZ method in which the single crystal is pulled while being rotated under the conditions where the crystal growth rate V.sub.1 (mm/min) and the crystal circumference velocity V.sub.2 (mm/min) satisfy the following relationships:0.4.ltoreq.V.sub.10.628.times.10.sup.4 .ltoreq.V.sub.2 .ltoreq.1.0.times.10.sup.4andV.sub.2 .ltoreq.-3.72.times.10.sup.4 V.sub.1 +4.35.times.10.sup.4It is possible to manufacture a silicon single crystal with a large diameter with the MCZ method without causing distortion.
摘要:
An apparatus for manufacturing a single crystal of silicon includes a crucible, a heater, electrodes, and a magnet. In addition to a plurality of heat generating portions and two main electrode portions, the heater has two or more auxiliary electrode portions. Two or more heater support members having an insulating property are further provided so as to support the heater through the auxiliary electrode portions. The number of heat generating portions which may be present between a heater support member and an electrode and between heater support members if adjacent to each other is equal to or less than 4. Each generating portion of the heater has a thickness of 25 mm or more. This structure makes it possible to produce a single crystal of silicon without causing breakage of a heater, even if a large electric current flows through the heater, even if a magnetic field of a high intensity is applied to a silicon melt in the crucible, and even if the heater has a large diameter.
摘要:
In method for manufacturing a silicon single crystal in accordance with a Czochralski method, during the growth of the silicon single crystal, pulling is performed such that a solid-liquid interface in the crystal, excluding a peripheral 5 mm-width portion, exists within a range of an average vertical position of the solid-liquid interface .+-.5 mm. There is also disclosed a method for manufacturing a silicon single crystal in accordance with the Czochralski method, wherein during the growth of a silicon single crystal, a furnace temperature is controlled such that a temperature gradient difference .DELTA.G (=Ge-Gc) is not greater than 5.degree. C./cm, where Ge is a temperature gradient (.degree.C./cm) at a peripheral portion of the crystal, and Gc is a temperature gradient (.degree.C./cm) at a central portion of the crystal, both in an in-crystal descending temperature zone between 1420.degree. C. and 1350.degree. C. or between a melting point of silicon and 1400.degree. C. in the vicinity of the solid-liquid interface of the crystal. The method maintains high productivity and enables a silicon single crystal and silicon wafers to be manufactured such that a defect density is very low over the entire crystal cross section, and the oxygen concentration distribution over the surface of each silicon wafer is improved.
摘要:
A seed crystal holder used in a crystal pulling apparatus operated in accordance with the Czochralski method. In the seed crystal holder, a heat-resistant cushioning material is provided between the surface of a seed crystal and the contact surface of claws of the holder or between a cutaway surface of the seed crystal and a contact surface of an insert of the holder. The heat-resistant cushioning material is selected from the group consisting of carbon fiber felt, glass fiber felt, metallic fiber felt, or selected from materials that cause plastic deformation such as Al.
摘要:
Oscillation of a growing crystal is suppressed in a Czochralski method when part of the growing crystal is mechanically held. Methods for holding and pulling a single crystal in a Czochralski method, wherein a seed crystal is pulled while rotating after the seed crystal is contacted with a raw material melt, part of the growing single crystal is mechanically held during pulling and the single crystal of heavy weight can be pulled regardless of mechanical strengths of the seed crystal or a neck portion thereof, wherein the raw material melt is under application of a magnetic field thereto when the growing crystal is mechanically held.
摘要:
There is disclosed a method for producing a silicon single crystal by growing the silicon single crystal by the Czochralski method, characterized in that the crystal is pulled at a pulling rate [mm/min] within a range of from V1 to V1+0.062×G while the crystal is doped with nitrogen during the growing, where G [K/mm] represents an average temperature gradient along the crystal growing direction, which is for a temperature range of from the melting point of silicon to 1400° C., and provided in an apparatus used for the crystal growing, and V1 [mm/min] represents a pulling rate at which an OSF ring disappears at the center of the crystal when the crystal is pulled by gradually decreasing the pulling rate. The method of the present invention can produce silicon single crystal wafers exhibiting an extremely low defect density over the entire plane of the crystal, in particular, with no small pits, and having an excellent oxide dielectric breakdown voltage, based on the CZ method under widely and easily controllable production conditions at a high production rate and high productivity.
摘要:
A single crystal is grown in accordance with a Czochralski method such that the time for passing through a temperature zone of 1150-1080.degree. C. is 20 minutes or less, or such that the length of a portion of the single crystal corresponding to the temperature zone of 1150-1080.degree. C. in the temperature distribution is 2.0 cm or less. Alternatively, the single crystal is grown such that the time for passing through a temperature zone of 1250-1200.degree. C. is 20 minutes or less, or such that the length of a portion of the single crystal corresponding to the temperature zone of 1250-1200.degree. C. in the temperature distribution is 2.0 cm or less. This method decreases both the density and size of so-called grown-in defects such as FPD (100 defects/cm.sup.2 or less), LSTD, and COP (10 defects/cm.sup.2 or less) to thereby enable efficient production of a single crystal having an excellent good chip yield (80% or greater) in terms of oxide dielectric breakdown voltage characteristics.
摘要翻译:根据切克劳斯斯基方法生长单晶,使得通过1150-1080℃的温度区的时间为20分钟或更短,或者使得单晶的一部分的长度对应于温度 1150-1080℃的区域的温度分布为2.0cm以下。 或者,单晶生长使得通过1250-1200℃的温度区的时间为20分钟或更短,或者使得对应于1250℃的温度区的单晶的一部分的长度, 1200℃,温度分布为2.0cm以下。 该方法既降低FPD(100个缺陷/ cm 2以下),LSTD,COP(10个缺陷/ cm 2以下)等所谓的内置缺陷的密度和尺寸,能够有效地制造具有 在氧化物绝缘击穿电压特性方面,极好的芯片产量(80%以上)优异。
摘要:
There is disclosed a method for producing a silicon single crystal wafer wherein a silicon single crystal is grown in accordance with the CZ method with doping nitrogen in an N-region in a defect distribution chart which shows a defect distribution in which the horizontal axis represents a radial distance D (mm) from the center of the crystal and the vertical axis represent a value of F/G (mm.sup.2 /.degree. C..multidot.min), where F is a pulling rate (mm/min) of the single crystal, and G is an average intra-crystal temperature gradient (.degree. C./mm) along the pulling direction within a temperature range of the melting point of silicon to 1400.degree. C. There can be provided a method of producing a silicon single crystal wafer consisting of N-region where neither V-rich region nor I-rich region is present in the entire surface of the crystal by CZ method, under the condition that can be controlled easily in a wide range, in high yield, and in high productivity.
摘要:
A method for producing a silicon single crystal in accordance with the Czochralski method. The single crystal is grown in an N.sub.2 (V) region where a large amount of precipitated oxygen and which is located within an N region located outside an OSF ring region, or is grown in a region including the OSF ring region, N.sub.1 (V) and N.sub.2 (V) regions located inside and outside the OSF ring region, in a defect distribution chart which shows a defect distribution in which the horizontal axis represents a radial distance D (mm) from the center of the crystal and the vertical axis represents a value of F/G (mm.sup.2 /.degree.C..multidot.min), where F is a pulling rate (mm/min) of the single crystal, and G is an average intra-crystal temperature gradient (.degree.C./mm) along the pulling direction within a temperature range of the melting point of silicon to 1400.degree. C. The method allows production of silicon single crystal wafers in which neither FPDs nor L/D defects exist on the wafer surface, and gettering capability stemming from oxygen precipitation is provided over the entire wafer surface, and silicon single crystal wafers wherein OSF nuclei exit but no OSF ring appears when the wafer is subjected to thermal oxidation treatment, neither FPDs nor L/D defects exist on the wafer surface, and gettering capability is provided over the entire wafer surface.