Abstract:
A short-range wireless communication (SRWC) mobile storage device includes a portable storage device and a SRWC device tag. The SRWC device tag has a non-volatile memory for storing an access-control setting information. If the access-control setting information has already been set with required parameters and when the portable storage device with the SRWC device tag is connected to a master equipment, the portable storage device is automatically switched to a secured private zone for the master equipment to access.
Abstract:
A method for releasing a diaphragm of a micro-electro-mechanical systems (MEMS) device at a stage of semi-finished product. The method includes pre-wetting the MEMS device in a pre-wetting solution to at least pre-wet a sidewall surface of a cavity of the MEMS device. Then, a wetting process after the step of pre-wetting the MEMS device is performed to etch a dielectric material of a dielectric layer for holding the diaphragm, wherein a sensing portion of the diaphragm is released from the dielectric layer.
Abstract:
A MEMS microphone package device includes a MEMS microphone chip as an integrated circuit chip. An acoustic sensing structure is embedded in the integrated circuit chip. An adhesive structure adheres on outer sidewall of the microphone chip. A bottom portion of the adhesive structure protrudes out from first surface of the microphone chip and adheres on a surface of a substrate, having interconnection structure, to form a first seal ring. A space between the acoustic sensing structure and the substrate and sealed by the first seal ring forms a second chamber. A cover adheres to top portion of the adhesive structure, covering over the cavity on the second surface of the microphone chip. The top portion of the adhesive structure forms as a second seal ring. A space between the cover and the second surface of the microphone chip and sealed by the second seal ring forms a first chamber.
Abstract:
A method to protect an acoustic port of a microelectromechanical system (MEMS) microphone is provided. The method includes: providing the MEMS microphone; and forming a protection film, on the acoustic port of the MEMS microphone. The protection film has a porous region over the acoustic port to receive an acoustic signal but resist at least an intruding material. The protection film can at least endure a processing temperature of solder flow.
Abstract:
A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection.
Abstract:
A structure of micro-electro-mechanical-system (MEMS) microphone includes a substrate, having a first opening. A dielectric layer is disposed on the substrate, wherein the dielectric layer has a second opening aligned to the first opening. A membrane is disposed within the second opening of the dielectric layer. A peripheral region of the membrane is embedded into the dielectric layer at sidewall of the second opening. A backplate layer is disposed on the dielectric layer. The backplate layer includes a protection layer, having a peripheral region disposed on the dielectric layer and a central region with venting holes over the second opening. The central region of the protection layer further has anti-sticky structures at a side of the protection layer toward the membrane. An electrode layer is disposed on the side of the protection layer, surrounding the anti-sticky structures.
Abstract:
In an embodiment, the invention provides a structure of MEMS microphone includes a substrate of semiconductor, having a first opening in the substrate. A dielectric layer is disposed on the substrate, having a dielectric opening. A diaphragm is within the dielectric opening and held by the dielectric layer at a peripheral region, wherein the diaphragm has a diaphragm opening. A back-plate is disposed on the dielectric layer, over the diaphragm. A protruding structure is disposed on the back-plate, protruding toward the diaphragm. At least one air valve plate is affixed on an end of the protruding structure within the diaphragm opening of the diaphragm. The air valve plate is activated when suffering an air flow with a pressure.
Abstract:
A structure of micro-electro-mechanical-system (MEMS) microphone includes a substrate, having a first opening. A dielectric layer is disposed on the substrate, wherein the dielectric layer has a second opening aligned to the first opening. A membrane is disposed within the second opening of the dielectric layer. A peripheral region of the membrane is embedded into the dielectric layer at sidewall of the second opening. A backplate layer is disposed on the dielectric layer. The backplate layer includes a protection layer, having a peripheral region disposed on the dielectric layer and a central region with venting holes over the second opening. The central region of the protection layer further has anti-sticky structures at a side of the protection layer toward the membrane. An electrode layer is disposed on the side of the protection layer, surrounding the anti-sticky structures.
Abstract:
A structure of micro-electro-mechanical-system microphone includes a substrate of semiconductor, having a first opening in the substrate. A dielectric layer is disposed on the substrate, the dielectric layer has a second opening, corresponding to the first opening. A diaphragm is located within the second opening, having an embedded part held by the dielectric layer and an exposed part exposed by the second opening. The exposed part has a junction peripheral region, a buffer peripheral region and a central region. The junction region has an elastic structure with slits, the buffer peripheral region includes a plurality of holes and is disposed between the junction peripheral region and the central region. A backplate is disposed on the dielectric layer above the second opening, wherein the backplate includes venting holes distributed at a region corresponding to the central part of the diaphragm.
Abstract:
A MEMS microphone includes a substrate. A dielectric layer is disposed on the substrate, having an opening and includes: indent region surrounding the opening; pillars extending from an indent surface at the indent region to the substrate; and an outer part surrounding the indent region and disposed on the substrate. A signal sensing space is created at the indent region between the pillars and between the pillars and the outer part. A first electrode layer is disposed on the indent surface of the dielectric layer. A second electrode layer is disposed on the substrate. A sensing diaphragm is held by the dielectric layer, including two elastic diaphragms supported by the dielectric layer; and a conductive plate between the first elastic diaphragm and the second elastic diaphragm. The conductive plate has a central part embedded in the holding structure and a peripheral part extending into the signal sensing space.