Abstract:
Provided is a heat generating component of which volume resistivity hardly varies even if used repeatedly at a high temperature for a long period of time. Since a thin coating heater part (13) formed on a substrate part (12) is composed of a thermal sprayed coating containing TixOy (wherein, 0
Abstract:
The heater component (1) has a substrate part (2), and a thin coating heater (4) which is equipped outside this substrate part (2) and generates heat by power supply. The thin coating heater (4) is formed of a thermal sprayed coating. The thin coating heater (4) has a heater body (10) and a heater extension part (11). The heater body (10) is arranged on a first end face (2a) of the substrate part (2). The heater extension part (11) is extended from the heater body (10) to a second end face (2b) of the substrate part (2) through a side surface (2c) of the substrate part (2). A tip part (11s) of the heater extension part (11) is a heater power supplying part (12) for supplying electric power to the heater body (10).
Abstract:
An insulated bearing includes a pair of bearing rings arranged concentrically to each other and rolling elements arranged to be rotatable between the pair of bearing rings, at least one of the bearing rings having an insulating layer formed thereon. The one of the bearing rings having the insulating layer formed thereon has an annular groove having an arc-shaped cross section formed on each of both end surfaces of the bearing ring. At least a surface from a non-raceway surface side circumferential surface to the annular groove of the bearing ring is covered by the insulating layer. The insulating layer is a ceramic thermal sprayed layer.
Abstract:
A component for a hot-dip metal plating bath includes a base material and a thermal spray coating disposed to cover a surface of the base material. The base material includes ferritic stainless steel that contains: C: 0.10% to 0.50% by mass; Si: 0.01% to 4.00% by mass; Mn: 0.10% by mass to 3.00% by mass; Cr: 15.0% to 30.0% by mass; a total of Nb, V, Ti, and Ta: 0.9% by mass to 5.0% by mass; and a balance of Fe and unavoidable impurities. The ferritic stainless steel includes a microstructure that includes a ferrite phase as a main phase and a crystallized carbide, an area fraction of a Nb carbide, a Ti carbide, a V carbide, a Ta carbide, and a composite carbide thereof to the crystallized carbide of 30% or more. The component contains 50% by mass or more of Al.
Abstract:
Provided is a heat generating component of which volume resistivity hardly varies even if used repeatedly at a high temperature for a long period of time. Since a thin coating heater part (13) formed on a substrate part (12) is composed of a thermal sprayed coating containing TixOy (wherein, 0
Abstract:
An insulated bearing includes an outer ring, an inner ring, and a plurality of rolling elements. At least one of the outer ring and an inner ring is made of metal, the plurality of rolling elements are provided between the outer ring and the inner ring, so as to be freely rolled, and at least one of the outer ring and an inner ring is coated with an insulating layer. The insulating layer is formed of a mixture in which silicon carbide and/or aluminum nitride as an additive are/is dispersed in aluminum oxide as a base matrix. The content of the additive is 1 to 40 mass % with respect to the total amount of the mixture.
Abstract:
A composite thermoelectric material includes: a thermoelectric material of an intermetallic compound series; and a film that is coated over the whole or a part of the surface of the thermoelectric material and contains aluminum phosphate (AlPO4) as a main component. Such a composite thermoelectric material is obtained by: applying a coating liquid obtained by dispersing or dissolving aluminum phosphate (AlPO4) into a solvent over the surface of a thermoelectric material; drying the coating liquid and obtaining a precursor film; and firing the thermoelectric material over which the precursor film is formed.
Abstract:
A manufacturing method for a component in a plasma processing apparatus is provided. The method includes: performing a surface conditioning on a surface of an underlying layer on which a film is to be formed by thermal spraying, the surface of the underlying layer includes a surface of a base or a surface of a layer formed on the surface of the base; and forming the film on the surface of the underlying layer by thermally spraying yttrium fluoride. A high velocity oxygen fuel spraying method or an atmospheric plasma spraying method is used in the forming of the film.
Abstract:
Particle generation can be suppressed from a thermally sprayed film of yttrium fluoride. A component exposed to plasma in a plasma processing apparatus is provided. The component includes a base and a film. The base is made of aluminum or an aluminum alloy, and an alumite film may be formed on a surface of the base. The film is formed by thermally spraying yttrium fluoride on a surface of the base or on a surface of an underlying layer including a layer provided on the base. A porosity of the film is 4% or less, and an arithmetic mean roughness of a surface of the film is 4.5 μm or less.
Abstract:
A method for applying a thermal barrier coating according to an embodiment, includes: a step of forming a top coat layer on a bond coat layer formed on a heat-resistant alloy base material of an object. The step of forming the top coat layer includes forming the top coat layer by thermal-spraying a suspension, which contains ceramic powder, with atmospheric pressure plasma spraying, while cooling a portion of a plasma flame by supplying water as a cooling fluid to a periphery of the plasma flame at a supply rate of not less than 25 ml/min and not greater than 100 ml/min.