摘要:
A method and apparatus is provided for a operating a radio system (100) on shared communication channels. The system (100) has a sequence of communication channels (205), including a reservation channel, and a channel hopping protocol for operating on the sequence (205). A hop period is defined for the channel hopping protocol. The reservation channel is monitored for at least the channel hop period to find an open communication slot indicated by the absence of a reservation signal (320, 325, 330). Communications is then established within the open slot, and channel hopping occurs through the sequence of communication channels in the open slot (345, 350). The slot is preserved by transmitting a reservation signal on the reservation channel, when operating on the reservation channel (355, 360).
摘要:
A communication method in an adaptive CDMA communication system (100) capable of communicating a direct sequence spread spectrum communication signals which comprise bit sequences coded with spreading chip sequences. The method includes the steps of transmitting a DS-SS communication signal (30) having a training bit sequence (31) coded with spreading chip sequence. The method includes the step of despreading the DS-SS communication signal based on the training bit sequence (31) during a training interval. The DS-SS communication signals is despread by adaptively determining a despreading chip sequence. Then, following the training interval determining chip timing offset during a chip timing interval. Finally, bit timing offset is determined during a bit timing interval following the chip timing interval.
摘要:
In a parametric G-Rake receiver, a method an apparatus computes initial estimates of one or more scaling parameters and initial combining weights for the parametric G-Rake receiver; estimates the SINR of a received signal based on a mean pilot symbol estimate and the initial combining weights; computes revised estimates for one or more scaling parameters based on the estimated SINR and the initial combining weights; and computes revised combining weights based on one or more revised scaling parameter estimates.
摘要:
A receive station of the present invention despreads a received signal over multiple successive symbol periods of an extended measurement period to determine individual channel estimates over each symbol period of an extended period for multiple pilot signals. In one example, the extended measurement period comprises two extended periods, each of which comprise two symbol periods. As a result, the present invention provides channel estimates sufficient for both slow and fast fading conditions. The receive station determines a combined channel estimate for the pilot signals over each symbol period of an extended period by despreading the received signal over each symbol period of an extended measurement period using a common spreading sequence. Based on the combined channel estimates, the receive station determines individual channel estimates for each pilot signal over each symbol period of the extended period.
摘要:
A wireless communication receiver obtains improved performance under certain fast fading conditions by basing one or more received signal processing operations on pre-despreading chip sample correlations rather than on post-despreading noise correlations, but preserves soft scaling information by determining one or more scaling factors that relate the chip sample correlations to the noise correlations. By way of non-limiting examples, a Generalized RAKE receiver circuit may base combining weight generation on chip sample correlations rather than on post-despreading pilot symbol noise correlations, but scale the combining weights as a function of the one or more scaling factors, or, equivalently, scale the combined values generated from the combining weights. Similar scaling may be performed with respect to chip equalization filter combining weights in a chip equalization receiver circuit. Further, Signal-to-Interference Ratio (SIR) estimation may be improved in terms of fast fading responsiveness by using chip sample correlations, while preserving the proper scaling.
摘要:
Biasing soft output values based on a known or learned bit error rate function yields performance improvements in decoding algorithms adapted to work with soft values, such as soft output Viterbi algorithms (SOVA). For example, in a wireless receiver, the soft output values output from a signal demodulator may be biased to reflect the changes in bit error rate across a given burst or block of data. Such changes might arise, for example, due to increasing inaccuracies in the receiver's channel estimate, which is typically computed at the beginning or middle of a block of received data. The wireless receiver may store a table of scaling factors corresponding to the expected bit error rate distribution of the received signal. The table may be preloaded into the receiver, or may be determined during operation. In either case, the table may be updated during operation to reflect bit error incidence observed during operation.
摘要:
A radio communication system (10) operates over a sequence of communication channels using a synchronized channel hopping protocol. A first communication device (16) is provided which is capable of communicating over the sequence of communication channels using channel hopping, and which has an operating communication channel. A second communication device (13) is provided, which is capable of determining the operating communication channel and channel hopping parameters of the first communication device (16). The second communication device (13) can communicate over the sequence of communication channels using channel hopping synchronized with the channel hopping of the first communication device (16), while selecting an operating communication channel different from the operating communication channel of the first communication device (16) when both communication devices (13, 16) operate simultaneously.
摘要:
A code division multiple access (CDMA) communication system (10) for reuse of available spreading codes includes a first communication device (100) and a second communication device (106). The first and second communication devices (100, 106) are capable of identifying spreading codes and operating frequencies that are optimum for their respective radios. The identity of the optimum spreading code and the frequency of the optimum frequency is communicated from one communication device (100) to another (106), hence allowing the two devices to communicate with each other using their respective optimum codes and frequencies. These codes and frequencies may be periodically updated to provide reusability of codes. By dynamically updating codes and frequencies without the use of a central station, the efficiency and reusability of codes in the CDMA system (10) is significantly enhanced.
摘要:
In a CDMA communication system (100) capable of communicating between a receiver (20) and a transmitter (10) direct sequence spread spectrum communication signals (30), a system and method for synchronizing receiver bit timing and transmitter timing. Transmitter (10) transmits a training bit sequence (31) followed by a transmitter bit timing sequence (33). The receiver (20) adaptively determines a representation of a despreading chip sequence using a tapped delay line equalizer (400). Receiver bit timing offset is determined based on the representation of the despreading chip sequence and the transmitter bit timing sequence (33).
摘要:
A method of mitigating phase nulls in a local wireless telephone system comprises inserting one or more random bits into a frame of a simulcast signal. The introduction of the random bits into the frame causes subsequent bits in the frame to be modulated differently, thereby reducing phase cancellation nulls. While particularly suited to localized wireless telephone systems, the methodology may be equally adapted to any mobile network wherein geographically proximate antennas broadcast the same signals.