INTERFEROMETRIC FIBRE OPTIC GYROSCOPES USING HOLLOW CORE OPTICAL FIBRE AND METHODS THEREOF

    公开(公告)号:US20230009601A1

    公开(公告)日:2023-01-12

    申请号:US17902274

    申请日:2022-09-02

    Abstract: An interferometric optical fibre sensor comprises optical fibre defining an optical circuit configured to propagate a first optical wave via an environment in which the optical fibre can be exposed to a stimulus that modifies the first optical wave, and a second optical wave, and to combine the first optical wave and the second optical wave to create an interference signal containing information about the stimulus, wherein optical fibre propagating either or both of the first optical wave and the second optical wave comprises hollow core optical fibre configured to propagate the optical wave or waves by an antiresonant optical guidance effect.

    OPTICAL THIN FILMS AND FABRICATION THEREOF

    公开(公告)号:US20220333233A1

    公开(公告)日:2022-10-20

    申请号:US17761110

    申请日:2020-09-11

    Abstract: A method of forming an optical thin film, comprises providing an assembly comprising a layer of semiconductor material deposited on a substrate, the semiconductor material comprising a compound of at least one metal and a group VI element; depositing a masking layer onto the layer of semiconductor material, the masking layer being patterned to expose one or more regions of the layer of semiconductor material; applying to the assembly a plasma of the group VI element in order to cause indiffusion of the group VI element into the semiconductor material in the exposed regions while the masking layer blocks indiffusion in unexposed regions, the indiffusion causing a reduction in carrier density in the semiconductor material; and removing the masking layer; thereby forming, from the layer of semiconductor material, an optical thin film having a variation in carrier density and corresponding variation in optical properties matching the patterning of the masking layer in a plane parallel to the substrate.

    Hollow core photonic bandgap optical fibres and methods of fabrication

    公开(公告)号:US11428865B2

    公开(公告)日:2022-08-30

    申请号:US16635200

    申请日:2018-08-01

    Abstract: A hollow core photonic bandgap optical fibre comprises: a cladding comprising capillaries in a hexagonal array and a hollow core formed by excluding a hexagonal group of nineteen capillaries from the centre of the hexagonal array. The core is inflated. A core size ratio is 1.26 or above, defined as a ratio of the core diameter to the cladding diameter normalized to the ratio of the core diameter to the cladding diameter in an undistorted hexagonal array; a first ring ratio is between 0.55 and 2.50, defined as a ratio of the length of radially aligned struts separating the capillaries of the first ring to the length of a strut in an undistorted hexagonal array; and a core node spacing is between 0.60 and 1.90, where defined as a ratio of a strut length around the core of a largest corner capillary and a strut length around the core of a smallest side capillary. The fabrication method comprises four different pressures for the core, corner capillary, side capillary and cladding.

    PHOTONIC CHIP AND METHOD OF MANUFACTURE

    公开(公告)号:US20220214498A1

    公开(公告)日:2022-07-07

    申请号:US17605500

    申请日:2020-04-24

    Abstract: The invention provides a photonic chip comprising: a silicon substrate, an low refractive index layer above the silicon substrate, and a tapered waveguide above the low refractive index layer, the tapered waveguide having a first height at a first end of the tapered waveguide and a second height at a second end of the tapered waveguide, the second height being greater than the first height, and the tapered waveguide having a bottom surface that is closer to the substrate at the second end than at the first end. The invention further provides a method of manufacturing a photonic chip, the method comprising: providing a wafer comprising a silicon substrate, and an low refractive index layer above the silicon substrate, etching the low refractive index layer to form a tapered trench having a first height at a first end of the tapered trench and a second height at a second end of the tapered trench, the first second height being greater than the second first height, and the tapered trench having a bottom surface that is closer to the substrate at the first second end than at the second first end, and forming a tapered waveguide in the tapered trench.

    Liquid crystal spatial light modulator

    公开(公告)号:US11287705B2

    公开(公告)日:2022-03-29

    申请号:US16637176

    申请日:2018-07-19

    Abstract: The invention concerns a liquid crystal spatial light modulator (101) comprising: a liquid crystal layer (7); and on at least one side of the liquid crystal layer (7), at least one photovoltaic cell (456), each photovoltaic cell (456) comprising a photosensitive layer (5) comprising electron-donating (D) molecules and electron accepting (A) molecules, each photovoltaic cell (456) being arranged for spontaneous photovoltage under illumination. Electron-donating molecules and electron accepting molecules are preferably blended and form preferably an organic bulk heterojunction layer. The photosensitive layer (5) of each photovoltaic cell (456) is preferably comprised between: —an electron conducting layer (4) arranged for a transfer of an electron from its contacting photosensitive layer (5) easier than a transfer of an electron hole from its contacting photosensitive layer (5), and —an electron hole conducting layer (6) arranged for a transfer of an electron hole from its contacting photosensitive layer (5) easier than a transfer of an electron from its contacting photosensitive layer (5).

Patent Agency Ranking