Abstract:
The present disclosure relates to a fluid purification device that has a deactivation resistant photocatalyst having nanocrystallites of less than 14 nanometers (nm) in diameter with at least 200 m2 surface area/cm3 of skeletal volume in cylindrical pores of 5 nm in diameter or larger, with the mode of the pore size distribution 10 nm or more.
Abstract translation:本公开内容涉及一种流体净化装置,其具有抗失活光催化剂,其具有直径小于14纳米(nm)的纳米晶体,直径为5nm或更大的圆柱形孔中具有至少200m 2的表面积/ cm 3的骨架体积, 孔径分布的模式为10nm以上。
Abstract:
A composite article includes a substrate and a powder-derived composite coating on the substrate. The composite coating includes discrete regions of a first material and discrete regions of a second material. At least one of the first material or the second material is a chemical precursor.
Abstract:
A method for making a membrane electrode assembly includes the steps of providing a membrane electrode assembly including an anode including a hydrogen oxidation catalyst; a cathode; a membrane disposed between the anode and the cathode; and depositing a peroxide decomposition catalyst in at least one position selected from the group consisting of the anode, the cathode, a layer between the anode and the membrane and a layer between the cathode and the membrane wherein the peroxide decomposition catalyst has selectivity when exposed to hydrogen peroxide toward reactions which form benign products from the hydrogen peroxide. The peroxide decomposition catalyst can also be positioned within the membrane. Also disclosed is a power-generating fuel cell system including such a membrane electrode assembly, and a process for operating such a fuel cell system.
Abstract:
A refractory metal composite article includes a refractory metal ceramic section and a refractory metal ceramic coating disposed directly adjacent to the refractory metal ceramic section. The refractory metal ceramic section and the refractory metal ceramic coating form a composite porous matrix. Each of the refractory metal ceramic section and the refractory metal ceramic coating includes at least one of a refractory metal carbide, a refractory metal silicide, or a refractory metal boride. A solid filler is disposed within pores of the composite porous matrix, and the solid filler is selected from a polymer material, a ceramic material, a metallic material, a glass material, and a glass ceramic material.
Abstract:
A process for applying an oxidation resistant coating to an article includes the steps of mixing at least about 10% by volume to up to about 99% by volume of a slurry at least one silica based material having a viscosity of about 1×102 poise to about 1×107 poise at a temperature of about 1,292° F. (700° C.) to about 3,272° F. (1,800° C.) at least about 1% by volume to up to about 90% by volume of the slurry at least one oxygen scavenger, and a liquid medium to form the slurry; coating an article with the slurry to form a slurry coated article; and heat treating under an inert atmosphere the slurry coated article to form an article having at least one oxidation resistant coating layer containing the at least one oxygen scavenger.
Abstract:
A micro heat exchanger system includes a first flow path and a second flow path transverse thereto for transferring thermal energy between a first fluid flowing through the first flow path and a second fluid flowing through the second flow path. The first flow path and the second flow path are filled with a thermally conductive porous network which incorporate unique structures, such as tubes, honeycomb, corrugated metal, reticulated foams, woven meshes or nonwoven mats or felts, engineered lattice structures, or a combination of these structures. In another embodiment, the thermally conductive porous network is coated with catalyst to provide an integrated heat exchanger and catalytic reactors.
Abstract:
A machining system includes a support configured to retain an article, such as a rotor disk, having an area, such as a surface of a slot in the disk. A cutting tool, for example, a broach, is movable relative to the support to cut the area. A heating member, such as a laser, is configured to locally heat the area of the article. In one example, the cutting tool includes a body having a cutting edge. The heating member is supported by the body and is configured to provide heat adjacent to the cutting edge. The cutting edge cuts the locally heated area while the area is still heated.
Abstract:
A photocatalyst formed using a sol-gel process provides high photo activity, increased photocatalyst lifetime, and improved resistance to performance degradation caused by siloxane-based contaminants. The photocatalyst comprises particles of photocatalytically-active oxide having a surface area of greater than about 190 m2/cm3 of skeletal volume and having pores with a diameter of about 4 nm or greater. The particles are made up of wide band gap semiconductor crystallites that have a diameter of greater than about 2 nm.
Abstract translation:使用溶胶 - 凝胶法形成的光催化剂提供高的光活性,增加的光催化剂寿命,以及由硅氧烷基污染物引起的改善的对性能降解的抵抗力。 光催化剂包括具有大于约190m 2 / cm 3的骨架体积并且具有约4nm或更大直径的孔的光催化活性氧化物颗粒。 颗粒由直径大于约2nm的宽带隙半导体微晶组成。
Abstract:
A machining system includes a support configured to retain an article, such as a rotor disk, having an area, such as a surface of a slot in the disk. A cutting tool, for example, a broach, is movable relative to the support to cut the area. A heating member, such as a laser, is configured to locally heat the area of the article. In one example, the cutting tool includes a body having a cutting edge. The heating member is supported by the body and is configured to provide heat adjacent to the cutting edge. The cutting edge cuts the locally heated area while the area is still heated.
Abstract:
The present invention is a process for modifying the properties of a porous freeform fabricated part by increasing its density and reducing its porosity. The porosity and density of a freeform fabricated part are altered by packing the pores in a freeform part with an infiltrant, such as a preceramic polymer. The process includes drawing a vacuum on or pressurizing the freeform part while it is in an infiltrant bath, thereby forcing the infiltrant into the pores of the freeform part. After removing the densified freeform part from the infiltrant bath, the freeform part is subjected to a treating process, such that the infiltrant within the pores transforms to a ceramic or ceramic-containing phase to thereby increasing the density of the freeform part.