Abstract:
A programmable logic device including a set of aligned unified cells, with each unified cell including one or more logic array blocks and a set of signal interface bumps. An input/output band of each unified cell is aligned with input/output bands of adjacent unified cells. A trace is positioned between each signal interface bump and the input/output band. The input/output band of each unified cell is responsible for providing an input/output interface for the logic array block(s) of that unified cell. Signal interface bumps of a unified cell may be coupled to those of another cell via the package. As a result, row and column interconnect circuitry present in conventional programmable logic devices can be obviated. In another aspect of the invention, a grid of signal interface bumps is formed on a die. A package with a solder ball is positioned within the grid of signal interface bumps. A set of package routing leads is positioned between the grid of signal interface bumps and the solder ball.
Abstract:
A programmable logic device is configured to accommodate multiplication by the provision in each logic region of specialized components to form and sum partial products. The specialized components are separate from the ordinary logic of the logic region, and their presence imposes little penalty on the performance of ordinary logic functions, while enhancing the speed at which multiplication is performed by minimizing the number of logic regions used for a particular multiplication operation, and also minimizing the use of the interconnection resources of the device to convey signals among those regions.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
A method includes defining a pattern of time intervals, each time interval having a respective assigned communication speed, which alternates among multiple communication speeds supported by a first communication device. Synchronization requests are transmitted over a communication medium from the first communication device to a second communication device at the respective communication speed that is assigned in each interval in accordance with the pattern. While transmitting the synchronization requests, synchronization replies sent over the communication medium in response to the synchronization requests are received only at the respective communication speed that is assigned in each interval. Responsively to receiving the synchronization replies from the second communication device, one or more common communication speeds that are supported by both the first and the second communication devices are identified. Communication is established between the first and second communication devices over the communication medium using one of the common communication speeds.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
Driver circuitry for programmable logic devices may include a module comprising a driver and associated hardware-programmable input and/or output routing connections. Instances of the generalized driver module may be included anywhere on the programmable logic device that driver circuitry having characteristics within the capabilities of the generalized module is needed. The circuitry of each instance of the module is hardware-customized to match the driver characteristics required for that instance. Driver circuits may be distributed throughout the interconnection conductor resources of the programmable logic device in such a way as to optimize re-buffering of signals propagating through those resources.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.