Abstract:
Generally provided is a system and method that determines a force-travel profile of a shifter in a vehicle having a shifter having an associated shifter shaft for a transmission. The feel of the shifter to a user of the shifter may be improved by using present system. Additionally, accurate measurements for determining shifter forces applied to a shifter and corresponding position of the shifter are performed. In operation, the system correlates the forces applied to the shifter and associated movement of the shifter to determine an associated feel of the shifter. The system operates to equate the forces correlating to the shifter and movement of the shifter to calibrate a feel of the shifter for a user applying the force to the shifter to actuate the shifter.
Abstract:
A method may be employed to assure that a switch feel measurement system accurately measures a torque/angular displacement profile for a pivot switch. A procedure may be employed that aligns the pivot axis of the switch with the rotational axis of the measurement unit of the switch measurement system.
Abstract:
A method for mapping a two-dimensional image of a physical object onto a computer generated three-dimensional surface defined by a plurality of surface points in a CAD space has the steps of creating a two-dimensional texture image plane of the physical object by taking a photograph of the physical object with a photographic device and converting the photograph into a texture image plane having a plurality of texture image plane points, determining a physical position of the photographic device with respect to the physical object, and transferring the texture image plane onto the three-dimensional surface. The transfer is accomplished by positioning a synthetic camera in the CAD space with respect to the three-dimensional surface according to the physical position of the photographic device, mapping each of the plurality of surface points viewable by the synthetic camera to a corresponding texture image point in the texture image plane, and assigning texture coordinates to each of the plurality of surface points from the corresponding texture image plane point.
Abstract:
A system and method for direct modeling of fillets and draft angles include forming a fillet region having a first transition from a surface feature to the fillet region and a second transition from a base surface to the fillet region while maintaining a predetermined continuity at the first and second transitions. The system and method select (75) a general form of a fillet profile with a single basis function to describe the fillet, apply (76) the fillet profile to either side of a constant central region on the surface feature to form a surface feature profile, and sweep (77) the surface feature profile within the feature boundary to form the fillet region. The present invention allows such fillet regions to be subsequently modified while maintaining the predetermined continuity at the first and second transitions by applying a reparametrization (78) to the basis function to modify the fillet region.
Abstract:
A method for locating flaws in a smooth surface using at least one light source includes the steps of setting the light source at a predetermined length above the smooth surface, locating a highlight line, translating the light source across the smooth surface to create a plurality of highlight lines and locating distortions in the smooth surface.
Abstract:
A method of altering a computer generated mesh model of a design feature by a computer user to improve a feature design process is provided including providing a mesh model; forming a plane; defining an alteration area of the plane; forming a 2D mesh on the plane including a plurality of mesh nodes independent of the mesh model nodes within the alteration area; defining a partial differential equation to be numerically solved using the 2D mesh; numerically solving the partial differential equation using said 2D mesh to obtain solved 2D mesh node values; using the solved 2D mesh node values to obtain new values for each mesh model node including the portion of the mesh model to be altered; and, graphically regenerating the design feature using the mesh model nodes including the new values to form an altered portion of the mesh model.
Abstract:
A system and methods for communicating to a motor vehicle driver a desired direction to turn a steering wheel. The desired direction may be determined by, for example, a turn-by-turn navigation system, a lane-keeping aid system, and/or a forward collision warning system. A plurality of lights disposed on the steering wheel in a circumferentially extending array are illuminated in a pattern, the pattern comprises illuminating at least some of the plurality of lights in a repeating sequence beginning at a first position of the array away from the desired direction and progressing toward a second position of the array adjacent the desired direction. The pattern comprises a sequential illumination of the lights to communicate a direction of control action, a frequency of illumination to communicate a desired timing of the control action, and a color of illumination to communicate a positive or negative aspect.
Abstract:
Information about a device may be emotively conveyed to a user of the device. Input indicative of an operating state of the device may be received. The input may be transformed into data representing a simulated emotional state. Data representing an avatar that expresses the simulated emotional state may be generated and displayed. A query from the user regarding the simulated emotional state expressed by the avatar may be received. The query may be responded to.
Abstract:
A system and method for computer-aided engineering analysis using direct mesh manipulation of a mesh model is provided. The system includes a computer system having a memory, a processor, a user input device and a display device. The method includes the steps of selecting a geometric model in a computer-aided design (CAD) format, converting the CAD model into a mesh model and evaluating the mesh model using a computer-aided engineering (CAE) analysis. The method also includes the steps of modifying a surface of the mesh model by varying a predetermined parameter using direct surface manipulation (DSM), updating the mesh model and using the updated mesh model in further CAE analysis. Three techniques are provided for modifying a surface feature, including using a Dirichlet parameter distribution to determine the displacement of the surface feature; modeling the surface feature as an elastic sheet to determine deformation; and enclosing the feature within a lattice structure and using lattice deformation to determine surface deformation.
Abstract:
A system and method for replacing a direct surface manipulation (DSM) surface with an independent NURBS surface patch of a geometric model. The method includes the steps of sampling data points of the DSM surface and parameterizing the sampled data points. The method also includes determining knot vectors for a fitted NURBS surface patch and setting-up an equation system. The method further includes the steps of solving the equation system for the geometric model.