Abstract:
Provided are an MIT device-based oscillation circuit including a power source, an MIT device and a variable resistor, in which a generation of an oscillation and an oscillation frequency are determined according to a voltage applied from the power source and a resistance of the variable resistor, and a method of adjusting the oscillation frequency of the oscillation circuit. The MIT device includes an MIT thin film and an electrode thin film connected to the MIT thin film, and generates a discontinuous MIT at an MIT generation voltage, the variable resistor is connected in series to the MIT device, and the power source applies a voltage or an electric current to the MIT device. The generation of an oscillation and an oscillation frequency are determined according to the voltage applied from the power source and the resistance of the variable resistor.
Abstract:
Provided are a low-voltage noise preventing circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove a noise signal with a voltage less than a rated signal voltage. The abrupt MIT device is serially connected to the electrical and/or electronic system to be protected from the noise signal, and is subject to abrupt MIT at a predetermined voltage. Accordingly, low-voltage noise can be effectively removed.
Abstract:
Provided are a germanium (Ge) based metal-insulator transition (MIT) thin film which is formed of a Ge single-element material instead of a compound material of two or more elements and by which material growth may be easily performed and a problem of a second phase characteristic in accordance with a structural defect and an included impurity may be solved, an MIT device including the MIT thin film, and a method of fabricating the MIT device. The MIT device includes a substrate; a germanium (Ge) based MIT thin film which is formed of a Ge single-element material on the substrate and in which a discontinuous MIT occurs at a predetermined transition voltage; and at least two thin film electrodes contacting the Ge based MIT thin film, wherein the discontinuous MIT occurs in the Ge based MIT thin film due to a voltage or a current which is applied through the thin film electrodes.
Abstract:
Provided are a circuit for continuously measuring a discontinuous metal-insulator transition (MIT) of an MIT element and an MIT sensor using the circuit. The circuit comprises a to-be-measured object unit including the MIT element having a discontinuous MIT occurring at the transition voltage thereof, a power supply unit applying a predetermined pulse current or voltage signal to the to-be-measured object unit, a measurement unit measuring the discontinuous MIT of the MIT element, and a microprocessor controlling the power supply unit and the measurement unit. The discontinuous MIT measurement circuit continuously measures the discontinuous MIT of the MIT element, and thus it can be used as a sensor for sensing a variation in an external factor.
Abstract:
An abrupt MIT (metal-insulator transition) device with parallel MIT material layers is provided. The abrupt MIT device includes a first electrode disposed on a certain region of a substrate, a second electrode disposed so as to be spaced a predetermined distance apart from the first electrode, and at least one MIT material layer electrically connecting the first electrode with the second electrode and having a width that allows the entire region of the MIT material layer to be transformed into a metal layer due to an MIT. Due to this configuration, deterioration of the MIT material layer, which is typically caused by current flowing through the MIT material layer, is less likely to occur.
Abstract:
Provided are a temperature sensor using a metal-insulator transition (MIT) device subject to abrupt MIT at a specific temperature and an alarm including the temperature sensor. The abrupt MIT device includes an abrupt MIT thin film and at least two electrode thin films that contacts the abrupt MIT thin film. The abrupt MIT device generates abrupt metal-insulator transition at a specific transition temperature. The alarm includes a temperature sensor comprising an abrupt MIT device, and an alarm signaling device serially connected to the temperature sensor. Accordingly, the alarm can be manufactured to have a simple circuit and be of a small size by including the temperature sensor using an abrupt MIT device.
Abstract:
Provided are a low-voltage noise preventing circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove a noise signal with a voltage less than a rated signal voltage. The abrupt MIT device is serially connected to the electrical and/or electronic system to be protected from the noise signal, and is subject to abrupt MIT at a predetermined voltage. Accordingly, low-voltage noise can be effectively removed.
Abstract:
Provided are a 3-terminal MIT switch which can easily control a discontinuous MIT jump and does not need a conventipnal gate insulating layer, a switching system including the 3-terminal MIT switch, and a method of controlling an MIT of the 3-terminal MIT switch. The 3-terminal MIT switch includes a 2-terminal MIT device, which generates discontinuous MIT in a transition voltage, an inlet electrode (200) and an outlet electrode (300), which are respectively connected to each terminal of the 2-terminal MIT device, and a control electrode (400), which is connected to the inlet electrode and includes an external terminal separated from an external terminal of the inlet electrode, wherein an MIT of the 2-terminal MIT device is controlled according to a voltage or a current applied to the control electrode. The switching system includes the 3-terminal MIT switch, a voltage source connected to the inlet electrode, and a control source connected to the control electrode.
Abstract:
A photo-gating switch system comprising a photosensitive device formed on a substrate is provided. The photosensitive device may comprise a photosensitive layer and electrodes formed at both ends of the photosensitive layer. A light source irradiating light to the photosensitive device is integrated beneath the surface of the substrate.
Abstract:
A gas delivery system for providing a gas to manufacturing equipment includes a gas supply unit for providing the gas to the manufacturing equipment including devices to regulate the supply of gas from the gas supply unit to the manufacturing equipment. The system includes a main control unit for regulating the supply of the gas to the manufacturing equipment. The gas delivery system includes a supplemental control unit which receives an emergency shutdown signal from the main control unit for closing off the supply of gas in response to a malfunction of the main control unit and generates a signal for maintaining a gas flow to operate the manufacturing equipment until the cause of the malfunction has been determined. With the system, an unnecessary emergency shutdown of gas supply to semiconductor manufacturing equipment in response to a malfunction of a main controller can be prevented.