Abstract:
A transmission electron microscope (TEM) micro-grid includes a base and a plurality of electron transmission portions. The base includes a plurality of first carbon nanotubes and the first carbon nanotubes have a first density. Each electron transmission portions includes a hole defined in the base and a plurality of second carbon nanotubes located in the hole. The second carbon nanotubes have a second density. The second density is less than the first density. The base and the electron transmission portions form the TEM micro-grid for observation of a sample using a TEM microscope.
Abstract:
A thermoacoustic device includes a base, a plurality of first fasteners, at least one first electrode, at least one second electrode and a sound wave generator. Each of the first fasteners includes a body engaging with the base and a flexible element extending from the body. The at least one first electrode has a first end and a second end. The first end engages with the flexible element of the plurality of first fasteners, and the second end is secured on the base. The at least one second electrode has a third end and a fourth end. The third end engages with the flexible element of the plurality of first fasteners, and the fourth end is secured on the base. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode.
Abstract:
A touch panel includes a first electrode plate, a second electrode plate, and a transparent insulator. The first electrode plate includes a first transparent conductive layer. The second electrode plate includes a second transparent conductive layer opposite to and spaced from the first transparent conductive layer. The transparent insulator is located between and contacts with the first transparent conductive layer and the second transparent conductive layer. The transparent insulator has a refractive index larger than 1.0.
Abstract:
A speaker includes a base and a thermoacoustic device. The base includes a first connector, a second connector for receiving external signals, a first engaging member, and an amplifier circuit device electrically connecting to the first connector and the second connector. The thermoacoustic device includes a second engaging member and a fourth connector. The thermoacoustic device is detachably installed on the base by a detachable engagement between the first engaging member and the second engaging member and a fourth connector corresponds to the first connector of the base.
Abstract:
A thermoacoustic device includes a thermoacoustic module, a first protection component, a second protection component, and an infrared-reflective film. The thermoacoustic module includes a sound wave generator, at least one first electrode and at least one second electrode. The at least one first electrode and the at least one second electrode are electrically connected to the sound wave generator. The sound wave generator includes a carbon nanotube structure, and the first and second protection components are located on opposite sides of the sound wave generator. The infrared-reflective film is located on the first protection component.
Abstract:
A thermoacoustic device includes a thermoacoustic module and a frame. The thermoacoustic module includes a sound wave generator, at least one first electrode and at least one second electrode. The sound wave generator includes at least one carbon nanotube structure. The at least one first electrode and the at least one second electrode are electrically connected to the sound wave generator. The frame secures the thermoacoustic module.
Abstract:
A carbon nanotube film includes a first end and a second end. The second end is opposite to the first end. The carbon nanotube film includes a number of carbon nanotube wires and at least one first carbon nanotube film connected adjacent carbon nanotube wires of the number of carbon nanotube wires. The carbon nanotube wires fan out from the first end to the second end such that a distance between the adjacent carbon nanotube wires gradually increases from the first end to the second end. The carbon nanotube film defines an open angle. A method for making the above-mentioned carbon nanotube film is also provided.
Abstract:
A carbon nanotube film supporting structure is provided. The carbon nanotube film supporting structure is used for supporting a carbon nanotube film structure. The carbon nanotube film supporting structure includes a substrate and a number of protruding structures. The substrate has a surface defining a support region. The protruding structures are distributed on the support region. The carbon nanotube film structure can be peeled off completely after being in contact with the carbon nanotube film supporting structure. The present disclosure also relates to a method for using the carbon nanotube film supporting structure.
Abstract:
A pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and a carbon nanotube structure located in the matrix. The matrix comprises a first surface and a second surface substantially perpendicular to the first surface. The carbon nanotube structure includes a first end electrically connect to the lead. The carbon nanotube structure is substantially parallel to the second surface of the matrix. A distance between the carbon nanotube structure and the second surface of the matrix is less than 10 micrometers.
Abstract:
A display device includes an e-paper, a touch panel, and an external data interface. The e-paper has a display surface. The touch panel is located on the display surface of the e-paper. The touch panel is configured to control the e-paper. The data interface is configured to electrically connect the e-paper and the touch panel to an electric device. The e-paper and the touch panel include a plurality of processing units and control units integrated in the electric device. The present disclosure also relates to a display system using the display device.