Abstract:
This invention relates to solar panels with improved encapsulants and backsheets for greater power output and/or increased efficiency by using materials with higher thermal conductivity than conventional solar panels. According to certain embodiments the improved materials include fillers while maintaining sufficient dielectric properties. According to certain other embodiments, the invention includes a solar panel with the improved encapsulant between solar cells and the improved backsheet. The invention also includes a method of making a solar panel including the improved materials.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein metallic titanium particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The titanium particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
Abstract:
A method for simulating a hydroforming process includes modeling a virtual hydroforming die and a virtual tubular workpiece. The virtual workpiece is placed within the die after the die has been expanded. The die is then contracted to a finished size while the workpiece is deformed into a non-circular cross section in contact with the virtual die. The workpiece is subsequently pressurized to simulate production of a finished part.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein titanium nitride particles and carbon-coated iron particles to improve the reheat properties of the compositions. The compositions may also exhibit reduced yellowness, and improved resistance to the effects of UV light. Processes for making such compositions are also disclosed. The particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable, or decreased yellowness is desired, or increased resistance to the effects of ultraviolet light is desired, or any combination of the foregoing.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein metallic titanium particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The titanium particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
Abstract:
Polyester compositions are disclosed that are suitable for molding, and that include polyester polymers or copolymers having incorporated therein steel particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The steel particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for molding, and for use in packaging made from processes in which a reheat step is desirable.
Abstract:
Polyester compositions are disclosed that are suitable for molding, and that include polyester polymers or copolymers having incorporated therein metallic tantalum particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The tantalum particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for molding, and for use in packaging made from processes in which a reheat step is desirable.
Abstract:
Polyester compositions are disclosed that are suitable for molding, and that include polyester polymers or copolymers having incorporated therein metallic tungsten particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The tungsten particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for molding, and for use in packaging made from processes in which a reheat step is desirable.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein metallic titanium particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The titanium particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
Abstract:
This invention relates to a photovoltaic device with a polymeric mat and a method of making a photovoltaic device with a polymeric mat. The photovoltaic device includes a transparent layer for receiving solar energy, and at least one photovoltaic cell disposed below the transparent layer. The photovoltaic device also includes a polymeric mat disposed below the at least one photovoltaic cell, and a backsheet disposed below the polymeric mat. The photovoltaic device also includes an encapsulant bonding the transparent layer, the at least one photovoltaic cell, the polymeric mat, and the backsheet.