Abstract:
Illumination articles are described. More specifically, illumination articles that include a wearable device configured for wearing on the head of a wearer, a lightguide and light sources for emitting light into the lightguide are described. The illumination articles allow for wearable devices that uniformly illuminate a working area at high brightness without providing excessive glare to observers. The disclosed illumination article comprises: a wearable device configured for wearing on the head of a wearer, a lightguide disposed on the wearable device, wherein the lightguide is elongated and has a first end and a second end opposite the first end, and a first light source positioned at the first end, for emitting light into the lightguide. The lightguide further comprises a light emitting surface extending generally in an x-direction between the first and second end, and a light reflecting surface positioned opposite to the light emitting surface, wherein the light reflecting surface comprises a plurality of light extractors configured for directing light in a y-direction perpendicular to the x-direction, and wherein the light emitting surface is configured for directing light into an xy-plane.
Abstract:
Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
Abstract:
Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
Abstract:
Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
Abstract:
Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.