Abstract:
A secured “smart” container is disclosed for collecting green waste products including operational functions for collection, video surveillance and monitoring capacity. The secured “smart” container may include one or more programmable logic controllers. Operational functions are performed by electrical components including sensors to determine green waste deposits characteristics and contents. Operational functions are further adapted to send and receive data, operationally wirelessly, and configured and adapted to utilize solar derived electric power and, optionally, electric power from other sources. Embodiments provide constant 24 hour/7 days a week video surveillance and alert monitoring capabilities. Disclosed systems and methods also include collection and transportation of waste contents from the container to a processing subsystem. Additionally, disclosed systems may also include a monitoring system for monitoring the collection of green waste product, delivery of the same to the processing subsystem and tracking to and throughout final processing of the green waste product and handling personnel.
Abstract:
An ozone cleaning system includes a first chamber, a second chamber coupled to the first chamber, and a utility assembly disposed within the second chamber. The utility assembly includes an ozone generator configured to provide ozone to the first chamber, a humidifying unit configured to provide water vapor to the first chamber, and a blower configured to at least one of (i) reduce air pressure within the first chamber or (ii) draw the ozone from the first chamber following a decontamination process.
Abstract:
A method of destructing a toxic chemical, comprising the steps of mixing said toxic chemical with a liquid phase formed by an aqueous mixture of water and an ionic liquid or molten salt which is miscible with water, said ionic liquid or molten salt comprising a tertiary amine group or quaternary ammonium group; and contacting said toxic chemical in said liquid phase with said ionic liquid or molten salt so as to decompose said toxic chemical. The ionic liquid or molten salt comprises a tertiary amine group or quaternary ammonium group. The dispersion or solution further contains at least one oxidizing agent and a donor of hydrogen bonds. Decontamination of contaminated surfaces and decomposition of toxic substances are achieved by using environmentally friendly, non-toxic solvents and reactants which yields reaction products which are substantially non-harmful or even non-toxic.
Abstract:
Methods of mercury decontamination are provided that include: contacting elemental mercury with a metal salt having a standard reduction potential sufficient to oxidize elemental mercury to an aqueous salt of mercury. In other aspects, methods of mercury decontamination are provided that include: contacting the metal surface with a solution comprising a metal salt having a standard reduction potential (E0) of greater than 0.85, thereby oxidizing a mercury contaminant to a soluble mercury salt.
Abstract:
Certain exemplary embodiments provide methods for reducing a concentration of a contaminant associated with a medium, which can be any substance or material, such as soil, water, air, and/or fluid. In one exemplary method, the medium is treated with a ferric chelate and an oxidizing agent in amounts effective to oxidize at least a portion of the contaminant.
Abstract:
A method of deactivating an explosive composition provided in an explosive cartridge, which method comprises exposing the explosive composition to a deactivating agent that renders the explosive composition insensitive to detonation, wherein the deactivating agent is a chemical.
Abstract:
There is described a process for treatment of a fluid comprising an oxidizable contaminant. The process comprises the step of contacting the wastewater with a combination of: (i) a sulfide, (ii) a complex of Fe(III) and a chelating agent, and (iii) an oxidant. It has been discovered that of treatment of a fluid containing an oxidizable contaminant employing iron(III)-chelates as the Fenton catalyst may be significantly improved by including a sulfide in the reaction scheme. As described herein, by employing sulfide ion, the present inventors have been able to: (i) increase the rate of iron recycling from minutes or hours to a few seconds, and (ii) destroy benzene in an oil and gas refinery (OGR) wastewater in less than one minute. It is believed that these findings in OGR wastewater can be extended to other fluids containing other oxidizable contaminants.
Abstract:
In a method for processing used cathode material containing carbon, in particular used cathode troughs from aluminum production, the cathode material is put into a shaft furnace and, in order to gasify carbon, is subjected to a thermal treatment in the shaft furnace at a temperature above the ignition temperature of the carbon and above the evaporation temperature of toxic substances contained in the used cathode material. The reaction gases are conducted co-current with the carbon in a first longitudinal section of the shaft furnace and countercurrent to the carbon in a second longitudinal section of the shaft furnace. The reaction gases are drawn from a region of the shaft furnace having an enlarged cross-section between the longitudinal sections and are preferably subjected to an after-treatment.
Abstract:
The present invention refers to a method and related plants for removing, by means of redox reactions, the 137Cs from polluted EAF dusts, with an initial average value of radioactivity concentration either higher or lower than 10,000 Bq/kg, the decontamination from the 137Cs initially present in the EAF dusts having a yield of 98%-100%; the present invention also refers to the use of chemical-physical destabilisation agents, by means of redox reactions, for obtaining EAF dusts decontaminated from 137Cs.
Abstract:
Rose Bengal for detecting a presence of and decomposing contaminants. A method of detecting the presence of a contaminant includes treating a substrate with Rose Bengal and exposing the substrate to a light having a wavelength within the visible spectrum. A response of the Rose Bengal is monitored during the light exposure. When a contaminant is present and is exposed to the light, a conversion of the Rose Bengal between a quinoid form and a lactone form is induced.