Abstract:
Stents including a poly(D,L-lactide)(PDLLA)-based scaffold and PDLLA based therapeutic layer are disclosed. The PDLLA based scaffold may be amorphous and may include a primer layer. Methods of applying the PDLLA-based coating to the scaffold are disclosed with solvent processing methods using a solvent blend are also disclosed. Methods of removing residual solvent from a PDLLA-base coating that also condition the scaffold are disclosed. Methods of treating restenosis that release drugs to prevent restenosis without interfering with the natural positive remodeling of a vessel are disclosed.
Abstract:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
An endoprosthesis for delivery in a body lumen can be configured to inhibit structural fatigue, crack formation, and elastic recoil while providing improved crimping and expansion uniformity and radial strength. As such, the endoprosthesis can include at least one multi-stage crest element connecting adjacent bar arms. The multi-stage crest element and, optionally, the connection or transition between the multi-stage crest element and the bar arms can form a plurality of undulations or curves to improve the distribution of the strains experienced by the endoprosthesis. The improved strain distribution can improve the structural integrity and prevent failure of the endoprosthesis.
Abstract:
The invention is directed to an expandable stent for implanting in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. The invention provides for an intravascular stent having a plurality of cylindrical rings connected by links. The links between adjacent rings provide axial strength when subjected to longitudinal compressive forces.
Abstract:
A medical device includes a polymer scaffold crimped to a catheter having an expansion balloon. The scaffold has a structure that produces a low late lumen loss when implanted within a peripheral vessel and also exhibits a high axial fatigue life. In a preferred embodiment the scaffold forms ring structures interconnected by links, where a ring has 12 crowns and at most two links connecting adjacent rings.
Abstract:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
Abstract:
A scaffold strut is shaped to improve hemocompatibility. The scaffold is made from a tube having variable wall thickness. Methods are disclosed for modifying the thickness of the tube in such a way as to achieve a reduced hemodynamic profile, but without significantly affecting strength properties in areas where stress concentrations exist when the scaffold is loaded.