Abstract:
In an air handling system of a uniflow-scavenged, two-stroke cycle opposed-piston engine, repeatable trapped mass and composition are achieved by determining provision of air handling setpoints that control operation of the engine's air handling system components. In some aspects, these setpoints govern operations of the air handling system by actively controlling the intake manifold pressure (IMP), EGR flow, and exhaust channel backpressure.
Abstract:
A trapped burned gas fraction is controlled in a two-stroke cycle opposed-piston engine with uniflow scavenging by adjusting an external EGR setpoint in real time. The adjusted setpoint is used to control EGR flow in the engine's air handling system.
Abstract:
Control of airflow in a uniflow-scavenged, two-stroke cycle, opposed-piston engine during transient operation includes monitoring at least one operating parameter of the engine to recognize a transition to a transient state of engine operation. If a transient state of operation is detected, fuel injection and airflow into to the cylinders of the engine are controlled to optimize combustion and limit emissions. Airflow into cylinders of the engine may be controlled by increasing a scavenging ratio of the engine or by increasing a trapping efficiency of the engine.
Abstract:
In an air handling system of a uniflow-scavenged, two-stroke cycle opposed-piston engine, one or more engine operating state parameters are sensed, numerical values of air handling parameters based on trapped conditions in a cylinder of the engine at the last port closing of an engine operating cycle are determined in response to the sensed parameters, the numerical values are evaluated, and one or more of the numerical values is adjusted in response to the evaluation. The adjusted numerical values are used to control charge air flow and EGR flow in the air handling system.
Abstract:
A trapped burned gas fraction is controlled in a two-stroke cycle opposed-piston engine with uniflow scavenging by adjusting an external EGR setpoint in real time. The adjusted setpoint is used to control EGR flow in the engine's air handling system.
Abstract:
In an air handling system of a uniflow-scavenged, two-stroke cycle opposed-piston engine, one or more engine operating state parameters are sensed, numerical values of air handling parameters based on trapped conditions in a cylinder of the engine at the last port closing of an engine operating cycle are determined in response to the sensed parameters, the numerical values are evaluated, and one or more of the numerical values is adjusted in response to the evaluation. The adjusted numerical values are used to control charge air flow and EGR flow in the air handling system.
Abstract:
In an air handling system of a uniflow-scavenged, two-stroke cycle opposed-piston engine, one or more engine operating state parameters are sensed, numerical values of air handling parameters based on trapped conditions in a cylinder of the engine at the last port closing of an engine operating cycle are determined in response to the sensed parameters, the numerical values are evaluated, and one or more of the numerical values is adjusted in response to the evaluation. The adjusted numerical values are used to control charge air flow and EGR flow in the air handling system.