Abstract:
An opposed-piston engine has an air handling system equipped with a turbo-compound system that includes a power turbine for producing a rotary output in response to a flow of exhaust gas flowing into the turbine. The rotary output is connected to a crankshaft or other rotating element of the opposed-piston engine for converting some of the exhaust gas energy into mechanical energy supplied to the crankshaft.
Abstract:
Exhaust temperature management strategies for an opposed-piston, two-stroke engine with EGR are based on control of a ratio of the mass of fresh air and external EGR delivered to a cylinder to the mass of the trapped charge (density of the delivered charge multiplied by the trapped volume at port closing).
Abstract:
An opposed-piston engine has a cylinder block with a plurality of cylinders arranged inline, with each cylinder including an intake port longitudinally separated from an exhaust port. The engine is equipped with an air handling system that includes intake and exhaust chambers inside the cylinder block. All of the cylinder intake ports are contained in the intake chamber to receive charge air therein. The intake chamber includes elongated air inlets opening through opposing sides of the cylinder block. The exhaust chamber includes at least one exhaust outlet opening through a side of the cylinder block; all of the cylinder exhaust ports are contained in the exhaust chamber to discharge exhaust thereinto.
Abstract:
The air handling system of a turbocharged opposed-piston engine with uniflow scavenging includes an a supercharger operable to provide boost during startup and to drive EGR during normal engine operation.
Abstract:
Exhaust temperature management strategies for an opposed-piston, two-stroke engine with EGR are based on control of a ratio of the mass of fresh air and external EGR delivered to a cylinder to the mass of the trapped charge (density of the delivered charge multiplied by the trapped volume at port closing).
Abstract:
Control of airflow in a uniflow-scavenged, two-stroke cycle, opposed-piston engine during transient operation includes monitoring at least one operating parameter of the engine to recognize a transition to a transient state of engine operation. If a transient state of operation is detected, fuel injection and airflow into to the cylinders of the engine are controlled to optimize combustion and limit emissions. Airflow into cylinders of the engine may be controlled by increasing a scavenging ratio of the engine or by increasing a trapping efficiency of the engine.
Abstract:
Control of airflow in a uniflow-scavenged, two-stroke cycle, opposed-piston engine during transient operation includes monitoring at least one operating parameter of the engine to recognize a transition to a transient state of engine operation. If a transient state of operation is detected, fuel injection and airflow into to the cylinders of the engine are controlled to optimize combustion and limit emissions. Airflow into cylinders of the engine may be controlled by increasing a scavenging ratio of the engine or by increasing a trapping efficiency of the engine.
Abstract:
An opposed-piston engine has a cylinder block with a plurality of cylinders arranged inline, with each cylinder including an intake port longitudinally separated from an exhaust port. The engine's air handling system includes open intake and exhaust chambers in the cylinder block. The open chamber constructions eliminate the need for multi-pipe manifolds and smooth the flow of charge air.
Abstract:
The air handling system of a turbocharged opposed-piston engine with uniflow scavenging includes an a supercharger operable to provide boost during startup and to drive EGR during normal engine operation.
Abstract:
Control of airflow in a uniflow-scavenged, two-stroke cycle, opposed-piston engine during transient operation includes monitoring at least one operating parameter of the engine to recognize a transition to a transient state of engine operation. If a transient state of operation is detected, fuel injection and airflow into to the cylinders of the engine are controlled to optimize combustion and limit emissions. Airflow into cylinders of the engine may be controlled by increasing a scavenging ratio of the engine or by increasing a trapping efficiency of the engine.