Abstract:
Internal combustion engines, including engines producing power from solid or slow burning fuel(s), such as biological-based or petroleum-based fuels, wood, corn, biomass, coal, and waste products, and/or possibly other liquid or gaseous fluids, as well as methods for operating or implementing such engines, are disclosed herein. In an example embodiment, the engine includes a crankshaft, a piston, a cylinder having an internal cavity and several ports, and an assembly having a chamber having a first region within which solid fuel can be situated and combusted. The assembly further includes a diverter valve so that, depending upon a setting of the valve and during engine operation, first and second amounts of compressed air respectively proceed to the first region and to bypass the first region, and a combination of combustion products and the second amount proceeds via one of the ports to the part of the internal cavity.
Abstract:
An ignition apparatus for an internal combustion engine comprises an intake path supplying a mixture of air and fuel into the combustion chamber of the engine, a particle supplying unit having an ejection port opening into the combustion chamber for supplying minute particles of a material which is not the fuel and has a high light absorption factor, and a light source radiating a laser beam through a light focusing unit toward a suitably selected position in the internal space of the combustion chamber, so that the laser beam can strike the minute particles of high light absorption factor supplied from the particle supplying unit thereby producing a torch for igniting the air-fuel mixture.
Abstract:
A trapped burned gas fraction is controlled in a two-stroke cycle opposed-piston engine with uniflow scavenging by adjusting an external EGR setpoint in real time. The adjusted setpoint is used to control EGR flow in the engine's air handling system.
Abstract:
A propane fueled combustor for providing a controlled heat flux environment of twenty to two hundred kilowatts per square meter. The combustor has the capability of generating a repeatable and quantifiable environment in which to evaluate a response of an energetic material to a fast cook off hazard, such as a liquid fuel fire.
Abstract:
Internal combustion engines, including engines producing power from solid or slow burning fuel(s), such as biological-based or petroleum-based fuels, wood, corn, biomass, coal, and waste products, and/or possibly other liquid or gaseous fluids, as well as methods for operating or implementing such engines, are disclosed herein. In an example embodiment, the engine includes a crankshaft, a piston, a cylinder having an internal cavity and several ports, and an assembly having a chamber having a first region within which solid fuel can be situated and combusted. The assembly further includes a diverter valve so that, depending upon a setting of the valve and during engine operation, first and second amounts of compressed air respectively proceed to the first region and to bypass the first region, and a combination of combustion products and the second amount proceeds via one of the ports to the part of the internal cavity.
Abstract:
A metal fuel powered driving system comprises: a cylinder; a piston disposed movably in and cooperating with the cylinder to define a combustion chamber; an arc generating unit including first and second electrodes extending into the combustion chamber, the first electrode being in the form of a first active metal wire; and a first wire supplying unit configured to feed the first active metal wire into the combustion chamber. When the power supplying source applies a voltage to the first and second electrodes, electric arc is generated between the first active metal wire and the second electrode to vaporize and combust the metal wire for driving movements of the piston. A method of driving a piston in a cylinder is also disclosed.
Abstract:
A method of fueling an internal combustion engine using explosive dust, characterized by making a slurry of particles of grain dust, jetting said slurry to arrange said particles seriatim, drying said seriatim particles, injecting said dried particles in a series of computer controlled program of successive rasters into said engine, adding dried oxygenated air to said dried injected particles and igniting said rasters of dried dust particles inside said engine to drive the piston.
Abstract:
Internal combustion engines, including engines producing power from solid or slow burning fuel(s), such as biological-based or petroleum-based fuels, wood, corn, biomass, coal, and waste products, and/or possibly other liquid or gaseous fluids, as well as methods for operating or implementing such engines, are disclosed herein. In an example embodiment, the engine includes a crankshaft, a piston, a cylinder having an internal cavity and several ports, and an assembly having a chamber having a first region within which solid fuel can be situated and combusted. The assembly further includes a diverter valve so that, depending upon a setting of the valve and during engine operation, first and second amounts of compressed air respectively proceed to the first region and to bypass the first region, and a combination of combustion products and the second amount proceeds via one of the ports to the part of the internal cavity.
Abstract:
The instant invention is to a new fuel system, which will allow operation of large scale electrical power generating facilities at a fraction of the cost of coal or natural gas fueled facilities and will not produce significant heat, exhaust emission gases, or particulate pollution. Because of the nature of the chemical reaction exploited in the system, it is denominated an instant entropy system (“IES”). The fuel used by the inventive IES produces gas expansion, but not from an oxidation/combustion reaction, and it does not produce oxidative exothermic heat. The IES utilizes a material first developed in the early part of the twentieth century—triacetone triperoxide (TAP).
Abstract:
A powder fuel engine includes a battery, a cylinder and a generator. The battery is connected with an air compressor linked with an air tank, and the generator. The air tank is connected with a mixer and two powder tanks respectively via a pressurization tube. The powder tanks are to store different powders and respectively connected with a powder tube connected with the mixer. A powder jetting device connected to the mixer is connected with the cylinder that is provided with a powder combustion chamber, a piston, a spark plug and an outlet. The piston is connected with a connecting rod that is connected with a shaft. The generator is connected with an ignition device that is connected with the spark plug.