Abstract:
An opposed-piston engine has a cylinder block with a plurality of cylinders arranged inline, with each cylinder including an intake port longitudinally separated from an exhaust port. The engine's air handling system includes open intake and exhaust chambers in the cylinder block. The open chamber constructions eliminate the need for multi-pipe manifolds and smooth the flow of charge air.
Abstract:
An opposed-piston engine has a cylinder block with a plurality of cylinders arranged inline, with each cylinder including an intake port longitudinally separated from an exhaust port. The engine is equipped with an air handling system that includes intake and exhaust chambers inside the cylinder block. All of the cylinder intake ports are contained in the intake chamber to receive charge air therein. The intake chamber includes elongated air inlets opening through opposing sides of the cylinder block. The exhaust chamber includes at least one exhaust outlet opening through a side of the cylinder block; all of the cylinder exhaust ports are contained in the exhaust chamber to discharge exhaust thereinto.
Abstract:
Exhaust temperature management strategies for an opposed-piston, two-stroke engine with EGR are based on control of a ratio of the mass of fresh air and external EGR delivered to a cylinder to the mass of the trapped charge (density of the delivered charge multiplied by the trapped volume at port closing).