Abstract:
An outboard motor includes an engine to rotate a propeller and an engine cover that houses the engine. The engine cover includes two divided covers disposed above the engine and that directly face the engine. The two divided covers include two connections that are connected together and that overlap the engine in a plan view.
Abstract:
A marine engine assembly for mounting to a watercraft is disclosed. The marine engine assembly has an engine unit, an exhaust system fluidly and a propulsion device. The engine unit includes an engine unit housing, an internal combustion engine and an air intake assembly. The air intake assembly, at least one combustion chamber, and the exhaust system together defining at least in part a gas flow pathway. A sealing valve is provided in the gas flow pathway. The sealing valve has an open position permitting flow of gas therethrough. The sealing valve has a closed position preventing flow of gas therethrough for sealing a portion of the gas flow pathway downstream of the sealing valve from a portion of the gas flow pathway upstream of the sealing valve. An air pump is configured for supplying air to the gas flow pathway downstream of the sealing valve.
Abstract:
An internal combustion engine may include an engine block, a cylinder within the engine block, and a piston within the cylinder. The piston may have an outer peripheral wall, and a groove in the outer peripheral wall of the piston may have a first edge and a second edge spaced from the first edge. The piston may have a piston ring in the groove, and the piston ring may have a shape that meanders within the groove, such that the shape of the piston ring differs from a shape of the groove and such that the piston ring does not substantially fill the groove. The piston ring may be constructed of a material that when subjected to heat causes a shape of the meanderings to change, thereby enabling the piston ring to expand in an axial direction of the piston, between the edges of the groove.
Abstract:
A linear reciprocating engine may include an engine block, a cylinder having combustion chambers at opposing ends, cylinder heads located at an end of the respective combustion chambers, respectively, and a double-faced piston. The engine may further include piston rod portions extending from both faces of the piston through the combustion chambers. The engine may further include an exhaust outlet in a peripheral cylinder wall and elongated channels in the piston rod portions being configured to serve as an intake inlet for gas from a location external to the cylinder. When the piston is in a combustion stage in a first combustion chamber, the piston blocks the exhaust outlet from communicating with the first chamber with the first channel access opening outside the first chamber, while simultaneously the exhaust outlet is in communication with a second combustion chamber with the second channel access opening within the second chamber.
Abstract:
A front structure of a saddle ride type vehicle includes a headlight unit, a front cowl, and a middle cowl. At a position outside the headlight unit in the vehicle width direction, an air intake portion opening to the front side of the vehicle is formed between the front cowl and the middle cowl. The front cowl includes a partition wall configured to divide the air intake portion into an upper region and a lower region. The lower region forms an inlet of an air intake path of an air cleaner. The upper region forms a first wind guide path configured to discharge a traveling wind to the rear side of the front cowl.
Abstract:
Various methods and systems are provided for cooling gas admission valves configured to admit gaseous fuel to an engine. In one embodiment, a system comprises an intake manifold including a gaseous fuel line for supplying gaseous fuel to a plurality of cylinders of an engine configured to combust the gaseous fuel, and at least one gas admission valve mounted to the gaseous fuel passage for regulating admission of the gaseous fuel to the plurality of cylinders. The system further includes a thermal management system configured to direct thermal fluid to the plurality of gas admission valves.
Abstract:
An opposed-piston engine has a cylinder block with a plurality of cylinders arranged inline, with each cylinder including an intake port longitudinally separated from an exhaust port. The engine's air handling system includes open intake and exhaust chambers in the cylinder block. The open chamber constructions eliminate the need for multi-pipe manifolds and smooth the flow of charge air.
Abstract:
A V-type multi-cylinder engine including a pair of banks, includes: an intake member forming an intake passage through which air is guided from outside; a pair of throttles each configured to regulate an amount of the air sucked into each of the pair of banks through the intake passage; and one single temperature sensor configured to detect a temperature of the air in the intake passage. The intake member includes a pair of openings downstream in a flowing direction of the air. Each the pair of throttles is connected to each of the pair of openings. The temperature sensor is disposed between the pair of openings.
Abstract:
A standby generator includes an engine including an output shaft, an alternator, and an enclosure including a base and a number of walls extending from the base including a front wall, a rear wall, a left wall, and a right wall. The output shaft extends toward the alternator and the left wall. The standby generator includes an intake opening configured to allow air to be drawn into the enclosure and an exhaust opening configured to allow heated air and exhaust gases to be expelled from the enclosure. The intake opening is provided on the rear wall and the exhaust opening is provided on the front wall.
Abstract:
A front structure of a saddle ride type vehicle includes a headlight unit, a front cowl, and a middle cowl. At a position outside the headlight unit in the vehicle width direction, an air intake portion opening to the front side of the vehicle is formed between the front cowl and the middle cowl. The front cowl includes a partition wall configured to divide the air intake portion into an upper region and a lower region. The lower region forms an inlet of an air intake path of an air cleaner. The upper region forms a first wind guide path configured to discharge a traveling wind to the rear side of the front cowl.