Abstract:
A fiber panel system includes a chassis including a backplane; and at least a first blade configured to mount to the chassis. The first blade is moveable relative to the chassis between a refracted (closed) position and at least one extended position. The first blade includes a coupler arrangement for connecting together media segments. Each blade includes a blade processor and a plurality of smart couplers. A chassis processor is electrically coupled to a processor port of the chassis backplane.
Abstract:
A cable storage system includes a box and at least one cable retainer. The box includes a plurality of walls at least partially defining a box interior. The box receives a cable from an exterior of the box. At least one wall of the box defines a retainer opening. The retainer is adapted to receive an unsecured length of the cable and may be selectively secured to the retainer opening. When the retainer is secured to the retainer opening, the retainer extends out of the interior of the box. Multiple retainers may be used to store additional lengths of cable.
Abstract:
A fiber panel system includes a chassis and at least a first blade configured to moveably mount to the chassis. Each blade includes a base, a frame, and front couplers. The base of each blade defines at least one opening at a location spaced rearwardly from the front couplers. The front couplers may be smart or passive.
Abstract:
A fiber panel system includes a chassis including a backplane; and at least a first blade configured to mount to the chassis. The first blade is moveable relative to the chassis between a refracted (closed) position and at least one extended position. The first blade includes a coupler arrangement for connecting together media segments. The first blade remains electrically connected to the backplane of the chassis when moving between the retracted and extended positions.
Abstract:
One exemplary embodiment is directed to a network management system that uses physical layer information in performing a network management function. Another exemplary embodiment is directed to a method of tracking channel compliance using physical layer information.
Abstract:
First and second active optical modules that terminate first and second active optical cable segments, each of which having a respective active end and a respective passive end, can be authenticated by: reading information from active-end storage devices attached to the respective active ends of the first and second active optical modules; providing information read from the active-end storage devices to an aggregation point; reading information from passive-end storage devices attached to the respective passive ends of the first and second active optical cable segments; providing information read from passive-end storage devices to the aggregation point; and authenticating the first and second active optical modules using information provided to the aggregation point.
Abstract:
A connectorized media cable includes at least one primary media segment; a first plug connector coupled to a first end of the media segment; and a second plug connector coupled to the second end of the media segment. Each plug connector includes a storage device having memory configured to store physical layer information pertaining to the cable. The storage device also includes at least four contacts that are electrically connected to the memory and isolated from the primary media segment. Certain types of cables include an electrical conductor extending along the media cable between a fourth one of the contacts of the first plug connector and a fourth one of the contacts of the second plug connector. The plug connectors of other types of cables have two data contacts coupled to the memory.
Abstract:
A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.
Abstract:
A connectorized media cable includes at least one primary media segment; a first plug connector coupled to a first end of the media segment; and a second plug connector coupled to the second end of the media segment. Each plug connector includes a storage device having memory configured to store physical layer information pertaining to the cable. The storage device also includes at least four contacts that are electrically connected to the memory and isolated from the primary media segment. Certain types of cables include an electrical conductor extending along the media cable between a fourth one of the contacts of the first plug connector and a fourth one of the contacts of the second plug connector. The plug connectors of other types of cables have two data contacts coupled to the memory.