Abstract:
Systems and methods are provided for testing a non-volatile memory, such as a flash memory. The non-volatile memory may be virtually partitioned into a test region and a general purpose region. A test application may be stored in the general purpose region, and the test application can be executed to run a test of the memory locations in the test region. The results of the test may be stored in the general purpose region. At the completion of the test, the test results may be provided from the general purpose region and displayed to a user. The virtual partitions may be removed prior to shipping the electronic device for distribution.
Abstract:
Systems, apparatuses, and methods are provided for whitening and managing data for storage in non-volatile memories, such as Flash memory. In some embodiments, an electronic device such as media player is provided, which may include a system-on-a-chip (SoC) and a non-volatile memory. The SoC may include SoC control circuitry and a memory interface that acts as an interface between the SoC control circuitry and the non-volatile memory. The SoC can also include an encryption module, such as a block cipher based on the Advanced Encryption Standard (AES). The memory interface can direct the encryption module to whiten all types of data prior to storage in the non-volatile memory, including sensitive data, non-sensitive data, and memory management data. This can, for example, prevent or reduce program-disturb problems or other read/write/erase reliability issues.
Abstract:
Systems and methods are disclosed for managing the peak power consumption of a system, such as a non-volatile memory system (e.g., flash memory system). The system can include multiple subsystems and a controller for controlling the subsystems. Each subsystem may have a current profile that is peaky. Thus, the controller may control the peak power of the system by, for example, limiting the number of subsystems that can perform power-intensive operations at the same time or by aiding a subsystem in determining the peak power that the subsystem may consume at any given time.