Abstract:
Systems and methods are disclosed for asynchronous management of access requests to control power consumption. In some cases, by asynchronously managing power within a system, multiple dies of a NVM can simultaneously draw current in order to match the power demand. In particular, an arbiter of the system can receive multiple requests to draw current, where each request may be associated with a different die of the NVM. In some embodiments, the arbiter can determine the servicing order using the time of arrival of the request (e.g., a first-in, first-out scheme). In other embodiments, the arbiter can simultaneously service multiple requests so long as the servicing of the multiple requests does not exceed a power budget.
Abstract:
Systems and methods are provided for improved communications in a nonvolatile memory (“NVM”) system. The system can toggle between multiple communications channels to provide point-to-point communications between a host device and NVM dies included in the system. The host device can toggle between multiple communications channels that extend to one or more memory controllers of the system, and the memory controllers can toggle between multiple communications channels that extend to the NVM dies. Power islands may be incorporated into the system to electrically isolate system components associated with inactive communications channels.
Abstract:
Systems and methods are disclosed for asynchronous management of access requests to control power consumption. In some cases, by asynchronously managing power within a system, multiple dies of a NVM can simultaneously draw current in order to match the power demand. In particular, an arbiter of the system can receive multiple requests to draw current, where each request may be associated with a different die of the NVM. In some embodiments, the arbiter can determine the servicing order using the time of arrival of the request (e.g., a first-in, first-out scheme). In other embodiments, the arbiter can simultaneously service multiple requests so long as the servicing of the multiple requests does not exceed a power budget.
Abstract:
Systems and methods are disclosed for managing the peak power consumption of a system, such as a non-volatile memory system (e.g., flash memory system). The system can include multiple subsystems and a controller for controlling the subsystems. Each subsystem may have a current profile that is peaky. Thus, the controller may control the peak power of the system by, for example, limiting the number of subsystems that can perform power-intensive operations at the same time or by aiding a subsystem in determining the peak power that the subsystem may consume at any given time.
Abstract:
Systems and methods are provided for stacked semiconductor memory devices. The stacked semiconductor memory devices can include a nonvolatile memory controller, a number of nonvolatile memory dies arranged in a stacked configuration, and a package substrate. The memory controller and the memory dies can be coupled to each other with vias that extend through the package substrate. A vertical interconnect process may be used to electrically connect the nonvolatile memory dies to each other, as well as other system components. The memory controller may be flip-chip bonded to external circuitry, such as another semiconductor device or a printed circuit board.
Abstract:
Systems and methods are provided for stacked semiconductor memory devices. The stacked semiconductor memory devices can include a nonvolatile memory controller, a number of nonvolatile memory dies arranged in a stacked configuration, and a package substrate. The memory controller and the memory dies can be coupled to each other with vias that extend through the package substrate. A vertical interconnect process may be used to electrically connect the nonvolatile memory dies to each other, as well as other system components. The memory controller may be flip-chip bonded to external circuitry, such as another semiconductor device or a printed circuit board.
Abstract:
Systems and methods are provided for improved communications in a nonvolatile memory (“NVM”) system. The system can toggle between multiple communications channels to provide point-to-point communications between a host device and NVM dies included in the system. The host device can toggle between multiple communications channels that extend to one or more memory controllers of the system, and the memory controllers can toggle between multiple communications channels that extend to the NVM dies. Power islands may be incorporated into the system to electrically isolate system components associated with inactive communications channels.