Abstract:
Embodiments of the present disclosure are directed to methods and systems for displaying an image on a user interface. The methods and systems include components modules and so on for determining a minimum feature width of the image and determining and a distance field of each region associated with the image. The distance field of each region may be based on the minimum feature width. A filter threshold associated with the distance field is then determined and the image is output using the determined filter threshold.
Abstract:
This disclosure pertains to the operation of graphics systems and to a variety of architectures for design and/or operation of a graphics system spanning from the output of an application program and extending to the presentation of visual content in the form of pixels or otherwise. In general, many embodiments of the invention contemplate a high level graphics framework to receive graphic requests from an application. The graphics request is analyzed by the high-level framework and sorted into groups of command statements for execution. The command statements are sorted to cause the most efficient processing by the underlying hardware and the groups are submitted separately to a GPU using a low-level standard library that facilitates close control of the hardware functionality.
Abstract:
A computing system that supports the use of multiple displays in display mirroring mode and extended display mode may automatically determine a display mode in which to configure the system (with little or no user input) based on various characteristics of the displays in the system. For example, the system may determine that a television, projector, or other presentation type display is connected in the system, and in response, may determine that the system should be configured in a display mirroring mode, rather than in an extended display mode. The system may also determine that the presentation type display is the preferred display, and may render image content in a best (or preferred) mode for that display using its native resolution, aspect ratio or color profile. The system may then scale the rendered image content for display on other (non-preferred) displays, such as an internal display, without re-rendering it.
Abstract:
A computing system that supports the use of multiple displays in display mirroring mode and extended display mode may automatically determine a display mode in which to configure the system (with little or no user input) based on various characteristics of the displays in the system. For example, the system may determine that a television, projector, or other presentation type display is connected in the system, and in response, may determine that the system should be configured in a display mirroring mode, rather than in an extended display mode. The system may also determine that the presentation type display is the preferred display, and may render image content in a best (or preferred) mode for that display using its native resolution, aspect ratio or color profile. The system may then scale the rendered image content for display on other (non-preferred) displays, such as an internal display, without re-rendering it.
Abstract:
A computing system that supports the use of multiple displays in display mirroring mode and extended display mode may automatically determine a display mode in which to configure the system (with little or no user input) based on various characteristics of the displays in the system. For example, the system may determine that a television, projector, or other presentation type display is connected in the system, and in response, may determine that the system should be configured in a display mirroring mode, rather than in an extended display mode. The system may also determine that the presentation type display is the preferred display, and may render image content in a best (or preferred) mode for that display using its native resolution, aspect ratio or color profile. The system may then scale the rendered image content for display on other (non-preferred) displays, such as an internal display, without re-rendering it.
Abstract:
This disclosure pertains to the operation of graphics systems and to a variety of architectures for design and/or operation of a graphics system spanning from the output of an application program and extending to the presentation of visual content in the form of pixels or otherwise. In general, many embodiments of the invention contemplate a high level graphics framework to receive graphic requests from an application. The graphics request is analyzed by the high-level framework and sorted into groups of command statements for execution. The command statements are sorted to cause the most efficient processing by the underlying hardware and the groups are submitted separately to a GPU using a low-level standard library that facilitates close control of the hardware functionality.
Abstract:
A head-mounted device includes one or more displays configured to present media content. The media content may be presented in a user interface window. The head-mounted device may include a display controller configured to adjust a frame rate of the one or more displays and may include a frame rate management circuit configured to determine whether to adjust the frame rate of the one or more displays based on the type of the media content being presented in the user interface window and based on additional information such as a preferred frame rate associated with the media content, a size of the user interface window relative to the total display area of the one or more displays, point of gaze data, hand gestures data, head pose data, data associated with other body parts, audio information and other data.
Abstract:
A system may include multiple electronic devices. A first device such as a source electronic device may supply visual content for displaying by a display in a second electronic device such as a display electronic device. The display electronic device may be a television or other device with a display. Calibration operations may be performed by taking light measurements on light produced by the display when test content is provided from the first device to the second device. A third electronic device in the system such as a portable electronic device with an ambient light sensor may make measurement on the light from the display while the test content is being displayed. The test content may contain a test image target with time-varying color and time-varying intensity, allowing calibration information such as gamma curves to be obtained on the display.
Abstract:
This disclosure pertains to the operation of graphics systems and to a variety of architectures for design and/or operation of a graphics system spanning from the output of an application program and extending to the presentation of visual content in the form of pixels or otherwise. In general, many embodiments of the invention contemplate a high level graphics framework to receive graphic requests from an application. The graphics request is analyzed by the high-level framework and sorted into groups of command statements for execution. The command statements are sorted to cause the most efficient processing by the underlying hardware and the groups are submitted separately to a GPU using a low-level standard library that facilitates close control of the hardware functionality.
Abstract:
One disclosed embodiment is directed to graphics processing method for displaying a user interface. The method includes executing a plurality of graphic processing operation in a single rendering pass. The rendering pass includes several render targets. At least one of the render targets is designated as a memory-less render target. The memory-less render target is used to store intermediate data. The intermediate data is combined with the outcome of at least one other graphics processing operation to generate a combined result. The combined result is stored in the frame buffer memory for display.