Abstract:
Disclosed herein are system, method, and computer program product embodiments for indicating a preference to receive a single-user multiple input multiple output (SU-MIMO) or multi-user multiple input multiple output (MU-MIMO) transmission from an access point (AP). Embodiments include generating a standard action frame that contains an action field that species a preference to receive a SU-MIMO or MU-MIMO transmission from the AP. A station (STA) can transmit the generated action frame to the AP. The STA can receive an acknowledgement frame from the AP that indicates the AP is configured to use the requested transmission method. The STA can then receive data from the AP using the requested transmission method.
Abstract:
The present disclosure describes a method for adaptive WiFi roaming, where an electronic device and an access point advertise their networking capability. The networking capability may be, for example, the capability to support at least one enterprise feature. Based on the advertisements transmitted by the electronic device, the access point can determine that the electronic device can support the at least one enterprise feature and may selectively enable the at least one enterprise feature. Additionally, based on advertisements transmitted by the access point, the electronic device can determine that the access point can support the at least one enterprise feature. Based on this mutual determination, the access point and electronic device may continue an association process based on the at least one enterprise feature.
Abstract:
A method, station and computer readable storage medium used to perform opportunistic roaming procedures. A station joined to a basic service set (BSS) of an access point (AP) performs a method including determining a roam profile for the station, the roam profile indicating at least one of available operating bands or available APs for the station, determining a first value associated with a network parameter of the joined AP, determining at least one roam candidate AP having a second value associated with the network parameter corresponding to the roam candidate AP, wherein the first and second values are a received signal strength indicator, determining whether a predetermined criteria value is satisfied based upon the first and second values, wherein the predetermined criteria value is a minimum difference between the first value and second value and roaming to the roam candidate AP when the predetermined criteria value is satisfied.
Abstract:
A method, station and computer readable storage medium used to perform a roaming procedure. The method performed by the station including determining whether a roam is to be performed, the station being associated with a first access point (AP), receiving network related information for at least one second AP, determining a score value for each of the at least one second AP based upon the network related information, the score value being either a quantitative score calculated as a function of a respective received signal strength indicator (RSSI) value and a respective load value or a qualitative score calculated as a function of a preference value and the RSSI value, selecting one of the at least one second AP based upon the score values and roaming from the first AP to the selected one of the at least one second AP.
Abstract:
An electronic device that performs a scan is described. During operation, the electronic device may perform, using a scanning radio, the scan of a band of frequencies, where the scanning radio only receives frames. Then, the electronic device may receive, using the scanning radio, a beacon associated with a second electronic device, where the beacon includes information associated with operation of a third electronic device in a second band of frequencies. Next, the electronic device may perform, using a data radio, a second scan of the second band of frequencies based at least in part on the information, where the data radio transmits and/or receives second frames, and where the second scan is performed, at least in part, while the scan is performed. Note that the electronic device may not be associated with (or may not have a connection with) the second electronic device and/or the third electronic device.
Abstract:
During operation, an electronic device may perform, using a scanning radio, a scan of a band of frequencies, where the scanning radio only receives frames. Then, the electronic device may receive, using the scanning radio, a beacon frame associated with a second electronic device, where the beacon frame includes information associated with operation of a third electronic device in a second band of frequencies. Next, the electronic device may perform, using a data radio, a second scan of the second band of frequencies based at least in part on the information, where the data radio transmits and/or receives second frames, and where the second scan is performed, at least in part, while the scan is performed. Note that the electronic device may not be associated with (or may not have a connection with) the second electronic device and/or the third electronic device.
Abstract:
Embodiments for performing a fast return to Wi-Fi following completion of a cellular voice call are provided. These embodiments include detecting that a device has switched from communicating over a Wi-Fi interface to communicating over a cellular interface; determining the earliest time that the device can switch back to Wi-Fi; and instituting the switch. In some embodiments, the process of performing a fast return to Wi-Fi is carried out by devices having small form factors, such as smartwatches and other wearables, which may be susceptible to coexistence and peak power problems. The fast return to Wi-Fi embodiments disclosed herein allow a device to perform a voice call over a cellular interface when Wi-Fi calling is not available, and switch over to a Wi-Fi interface immediately upon completion of the voice call in order to conserve battery life, achieve higher data speeds, and avoid high costs associated with cellular data transmissions.
Abstract:
Apparatus and methods for configuring wireless circuitry of a wireless communication device associated with a wireless local area network (WLAN) access point (AP) to use a reduced power consumption mode are disclosed. While associated with a multiple-input multiple-output (MIMO) WLAN AP and operating in a MIMO mode that includes at least two spatial streams for communication with multiple radio frequency (RF) receive chains active, the wireless communication device transmits a message indicating a request to use a spatial multiplexing power save (SMPS) mode that supports only one spatial stream and requires only a single active RF receive chain. The wireless communication device monitors packets received from the WLAN AP after a guard interval following the request and only switches to the SMPS mode when all packets received after the guard interval use only one spatial stream.
Abstract:
A method, station and computer readable storage medium used to perform a roaming procedure. The method performed by the station including determining whether a roam is to be performed, the station being associated with a first access point (AP), receiving network related information for at least one second AP, determining a score value for each of the at least one second AP based upon the network related information, the score value being either a quantitative score calculated as a function of a respective received signal strength indicator (RSSI) value and a respective load value or a qualitative score calculated as a function of a preference value and the RSSI value, selecting one of the at least one second AP based upon the score values and roaming from the first AP to the selected one of the at least one second AP.
Abstract:
One embodiment of the present invention provides a system configured to apply Internet Protocol (IP) address based packet filtering prior to entering Wake on Wireless LAN (WoWLAN) mode. During operation, the system receives a request to enter WoWLAN mode. In response to this request, the system collects a set of active IP addresses, as well as a set of active ports. Next, the system filters out packets destined to IP addresses that are not members of the set of active IP addresses, and ports that are not members of the set of active ports. Finally, the system enters WoWLAN mode.