Abstract:
Disclosed is a web server that includes a headlines module for automatically generating headlines based on data retrieved from a network (e.g., World Wide Web). The web server also includes an interactive agent for generating responses to inquiries relating to the headlines based on the data.
Abstract:
Disclosed is a method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes selecting anchor texts within a website based on a term density, weighting those anchor texts based on a percent of salient words to total words, and incorporating the weighted anchor texts into a live spoken dialog interface, the weights determining a level of incorporation into the live spoken dialog interface.
Abstract:
A system and method are disclosed for generating customized text-to-speech voices for a particular application. The method comprises generating a custom text-to-speech voice by selecting a voice for generating a custom text-to-speech voice associated with a domain, collecting text data associated with the domain from a pre-existing text data source and using the collected text data, generating an in-domain inventory of synthesis speech units by selecting speech units appropriate to the domain via a search of a pre-existing inventory of synthesis speech units, or by recording the minimal inventory for a selected level of synthesis quality. The text-to-speech custom voice for the domain is generated utilizing the in-domain inventory of synthesis speech units. Active learning techniques may also be employed to identify problem phrases wherein only a few minutes of recorded data is necessary to deliver a high quality TTS custom voice.
Abstract:
Disclosed is a method and apparatus for responding to an inquiry from a client via a network. The method and apparatus receive the inquiry from a client via a network. Based on the inquiry, question-answer pairs retrieved from the network are analyzed to determine a response to the inquiry. The QA pairs are not predefined. As a result, the QA pairs have to be analyzed in order to determine whether they are responsive to a particular inquiry. Questions of the QA pairs may be repetitive and, without more, will not be useful in determining whether their corresponding answer responds to an inquiry.
Abstract:
Disclosed is a method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes selecting anchor texts within a website based on a term density, weighting those anchor texts based on a percent of salient words to total words, and incorporating the weighted anchor texts into a live spoken dialog interface, the weights determining a level of incorporation into the live spoken dialog interface.
Abstract:
Disclosed is a method for training a spoken dialog service component from website data. Spoken dialog service components typically include an automatic speech recognition module, a language understanding module, a dialog management module, a language generation module and a text-to-speech module. The method includes selecting anchor texts within a website based on a term density, weighting those anchor texts based on a percent of salient words to total words, and incorporating the weighted anchor texts into a live spoken dialog interface, the weights determining a level of incorporation into the live spoken dialog interface.
Abstract:
A website mining tool is disclosed that extracts information from, for example, a company's website and presents the extracted information in a graphical user interface (GUI). In one embodiment, web pages from a website are stored in, for example, computer memory and a structure of the web pages is identified. A plurality of blocks of information is then extracted as a function of this structure and a category is assigned to each block of information. The elements in the blocks of information are then displayed, for example to a salesperson, as a function of these categories. In another embodiment, Document Object Modeling parsing is used to identify the structure of the web pages. In yet another embodiment, a support vector machine is used to categorize each block of information.
Abstract:
A website mining tool is disclosed that extracts information from, for example, a company's website and presents the extracted information in a graphical user interface (GUI). In one embodiment, web pages from a website are stored in, for example, computer memory and a structure of the web pages is identified. A plurality of blocks of information is then extracted as a function of this structure and a category is assigned to each block of information. The elements in the blocks of information are then displayed, for example to a salesperson, as a function of these categories. In another embodiment, Document Object Modeling parsing is used to identify the structure of the web pages. In yet another embodiment, a support vector machine is used to categorize each block of information.
Abstract:
Disclosed is a method and apparatus for responding to an inquiry from a client via a network. The method and apparatus receive the inquiry from a client via a network. Based on the inquiry, question-answer pairs retrieved from the network are analyzed to determine a response to the inquiry. The QA pairs are not predefined. As a result, the QA pairs have to be analyzed in order to determine whether they are responsive to a particular inquiry. Questions of the QA pairs may be repetitive and, without more, will not be useful in determining whether their corresponding answer responds to an inquiry.
Abstract:
A system and method provides a natural language interface to world-wide web content. Either in advance or dynamically, webpage content is parsed using a parsing algorithm. A person using a telephone interface can provide speech information, which is converted to text and used to automatically fill in input fields on a webpage form. The form is then submitted to a database search and a response is generated. Information contained on the responsive webpage is extracted and converted to speech via a text-to-speech engine and communicated to the person.