摘要:
A color-tunable plasmonic device is provided with a partially modulated refractive index. A first dielectric layer overlies a bottom electrode, and has a refractive index non-responsive to an electric field. A second dielectric layer overlies the first dielectric layer, having a refractive index responsive to an electric field. An electrically conductive top electrode overlies the second dielectric layer. A plasmonic layer including a plurality of discrete plasmonic particles is interposed between the top and bottom electrodes. In one aspect, the plasmonic layer is interposed between the first and second dielectric layers. In a second aspect, the plasmonic layer is interposed between the first dielectric layer and the bottom electrode. In a third aspect, a first plasmonic layer is interposed between the first dielectric layer and the bottom electrode, and a second plasmonic layer of discrete plasmonic particles is interposed between the first dielectric layer and the second dielectric layer.
摘要:
A plasmonic display device is provided having dual modulation mechanisms. The device has an electrically conductive bottom electrode that may be either transparent or reflective. A dielectric layer overlies the bottom electrode, made from an elastic polymer material having a refractive index responsive to an electric field. An electrically conductive top electrode, either transparent or reflective, overlies the dielectric layer. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the top and bottom electrodes and in contact with the dielectric layer. In one aspect, the plasmonic layer is embedded in the dielectric layer. Alternately, the plasmonic layer overlies the bottom (or top) electrode. Then, the dielectric layer overlies the plasmonic layer particles and exposed regions of the bottom electrode between the first plasmonic layer particles.
摘要:
An electrical pressure sensor is provided with a method for measuring pressure applied to a sensor surface. The method provides an electrical pressure sensor including a sealed chamber with a top surface, first electrode, second electrode, an elastic polymer medium, and metallic nanoparticles distributed in the elastic polymer medium. When the top surface of the sensor is deformed in response to an applied pressure, the elastic polymer medium is compressed. In response to decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance between metallic nanoparticles, the electrical resistance is decreased between the first and second electrodes through the elastic polymer medium.
摘要:
A plasmonic display device is provided that uses physical modulation mechanisms. The device is made from an electrically conductive bottom electrode and a first dielectric layer overlying the bottom electrode. The first dielectric layer is a piezoelectric material having an index of expansion responsive to an electric field. An electrically conductive top electrode overlies the first dielectric layer. A first plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the top and bottom electrodes and in contact with the first dielectric layer. In one aspect, the plasmonic particles are an expandable polymer material covered with a metal coating having a size responsive to an electric field.
摘要:
A method is provided for color tuning a plasmonic device with a color tunable electronic skin. A plasmonic electronic skin is used, including a first substrate, a plasmonic structure, an electrically conductive transparent first electrode layer, an electrically conductive transparent second electrode layer, and a polymer-networked liquid crystal (PNLC) layer interposed between the first and second transparent electrode layers. In response to receiving a color tuning voltage, a full visible spectrum incident light, and a PNLC switch voltage, the plasmonic structure generates a first primary color. A primary color exhibits a single wavelength peak with a spectral full width at half magnitudes (FWHMs) in the visible spectrum of light. In response to receiving the PNLC switch voltage between the first and second electrode layers, the PNLC layer passes incident light.
摘要:
An electrical pressure sensor is provided with a method for measuring pressure applied to a sensor surface. The method provides an electrical pressure sensor including a sealed chamber with a top surface, first electrode, second electrode, an elastic polymer medium, and metallic nanoparticles distributed in the elastic polymer medium. When the top surface of the sensor is deformed in response to an applied pressure, the elastic polymer medium is compressed. In response to decreasing the metallic nanoparticle-to-metallic nanoparticle mean distance between metallic nanoparticles, the electrical resistance is decreased between the first and second electrodes through the elastic polymer medium.
摘要:
A display device is provided for reflecting a black color, as enabled by an optical splitting photonic liquid crystal waveguide. Sets of top and bottom electrodes are formed in a periodic pattern. A first dielectric layer overlies the set of bottom electrodes, made from a liquid crystal (LC) material with molecules having dipoles responsive to an electric field. A plasmonic layer, including a plurality of discrete plasmonic particles, is interposed between the sets of top and bottom electrodes, and is in contact with the first dielectric layer. A voltage potential is applied between the top and bottom electrodes, generating an electric field. Dipole local orientation and non-orientation regions are created in the liquid crystal molecules in response to the electric field, and a wavelength of light outside the visible spectrum is reflected in response to optical spectrum splitting of the incident light.
摘要:
A method is provided for color tuning a plasmonic device with a color tunable electronic skin. A plasmonic electronic skin is used, including a first substrate, a plasmonic structure, an electrically conductive transparent first electrode layer, an electrically conductive transparent second electrode layer, and a polymer-networked liquid crystal (PNLC) layer interposed between the first and second transparent electrode layers. In response to receiving a color tuning voltage, a full visible spectrum incident light, and a PNLC switch voltage, the plasmonic structure generates a first primary color. A primary color exhibits a single wavelength peak with a spectral full width at half magnitudes (FWHMs) in the visible spectrum of light. In response to receiving the PNLC switch voltage between the first and second electrode layers, the PNLC layer passes incident light.
摘要:
A plasmonic polarizer and a method for fabricating the plasmonic polarizer are provided. The method deposits alternating layers of non-metallic film and metal, forming a stack. A hard mask is formed overlying the stack. The hard mask comprises structures having dimensions and periods between adjacent structures less than a first length, where the first length is equal to (a first wavelength of light/2). The stack is etched through openings in the hard mask to form pillar stacks of alternating non-metallic and metal layers having the dimensions of the hard mask structures. Then, the hard mask structures are removed. In one aspect, subsequent to removing the hard mask structures, the spaces between the pillar stacks are filled with a dielectric material.
摘要:
A plasmonic polarizer and a method for fabricating the plasmonic polarizer are provided. The method deposits alternating layers of non-metallic film and metal, forming a stack. A hard mask is formed overlying the stack. The hard mask comprises structures having dimensions and periods between adjacent structures less than a first length, where the first length is equal to (a first wavelength of light/2). The stack is etched through openings in the hard mask to form pillar stacks of alternating non-metallic and metal layers having the dimensions of the hard mask structures. Then, the hard mask structures are removed. In one aspect, subsequent to removing the hard mask structures, the spaces between the pillar stacks are filled with a dielectric material.