Abstract:
Briefly in accordance with one embodiment, the present technique provides a multi-energy tomosynthesis imaging system. The system includes an X-ray source configured to emit X-rays from multiple locations within a limited angular range relative to an imaging volume. The imaging system also includes a digital detector with an array of detector elements to generate images in response to the emitted X-rays. The imaging system further includes a detector acquisition circuitry to acquire the images from the digital detector. The imaging system may also include a processing circuitry configured to decompose plurality of images based on energy characteristics and to reconstruct the plurality of images to generate a three-dimensional multi-energy tomosynthesis image.
Abstract:
A method for generating an image includes accessing data of a scan of an object, using at least one characteristic of the accessed data to delineate at least one item of interest in the data and generating a 3D visualization image wherein transparency levels for at least some pixels not representing the item of interest are set according to a first set of rules, and transparency levels for at least some pixels representing an interior portion of the item of interest are set according to a second set of rules different than the first set of rules, and at least some pixels representative of a transition area are set according to a third set of rules different than the first and second sets of rules.
Abstract:
A method for detecting an anomaly includes performing a computed tomography (CT) scout scan to obtain data, and supplying the obtained data to a radiographic computer aided detection (CAD) algorithm.
Abstract:
One or more techniques are provided for identifying a period of minimal motion for an organ of interest, such as the heart or lungs. Motion data is acquired for the organ of interest and for one or more proximate organs using sensor-based and/or image-based techniques. The sensor-based techniques may include electrical and non-electrical techniques. The image-based techniques may include both pre-acquisition and acquisition image data. The motion data for the organ of interest and proximate organs may be used to generate a set of multi-input motion data that may be processed to identify desired periods, such as periods of minimal motion, within the overall motion of the organ of interest.
Abstract:
The present invention is a system and method of remote patient monitoring to allow a patient to initiate and activate sensing systems. In the system and method, standard parameters can be sensed, and the information can then be processed and sent to the physician or clinician. The clinician then has the ability to remotely configure or reconfigure the parameters of the sensing system so as to probe for more targeted information based on the initial sensed data.
Abstract:
Systems, methods and apparatus are provided through which in some embodiments, and database of images have categorized levels of severity of a disease or medical condition is generated from human designation of the severity. In some embodiments, the severity of a disease or medical condition is diagnosed by comparison of a patient image to images in the database. In some embodiments, changes in the severity of a disease or medical condition of a patient are measured by comparing a patient image to images in the database.
Abstract:
A technique for identifying, analyzing, structuring, mapping and classifying data entities is disclosed. A conceptual framework is established by a domain definition having an association list of attributes of interest. Data entities are accessed, analyzed, structured if appropriate, mapped and classified in accordance with the association list and attributes found in the entities, and in accordance with rules and algorithms for analyzing, recognizing and classifying the attributes. Various types of analysis may be performed following the classification. Searches and selection of the data entities may also be performed. Complex data entities may be processed, including text documents, image data, audio data, waveform data, and combinations of these.
Abstract:
Method and apparatus for handling data comprises decomposing data into a plurality of resolution levels using an integer wavelet decomposition. A transform module may be used to perform forward and inverse transformations on multi-dimensional data using integer wavelet transforms. A data stream is compiled comprising the plurality of resolution levels in a predetermined order. At least one resolution level of the plurality of resolution levels associated with a workflow application is accessed by a processor, and the workflow application is performed on the at least one resolution level.
Abstract:
Certain embodiments of the present invention provide a system and method for identifying stool particles in virtual dissection data for a colon. A shape classification may be determined for a segmented colon by three-dimensional filtering of a prone data set and a supine data set. The shape classification may be mapped onto a prone virtual dissection image and a supine virtual dissection image. The prone data set and the supine data set may be registered using one-dimensional registration to determine a registration. Shapes may be localized based on the shape classification and the registration for the prone virtual dissection and the supine virtual dissection. A distance metric may be applied to the localized shapes to identify stool particles. The identified stool particles may be suppressed. A prone virtual dissected image and a supine virtual dissected image may be displayed having the stool particles suppressed.
Abstract:
Systems, methods and apparatus are provided through which a specialized back-projection process reconstructs a finely detailed and crisp three-dimensional image (3-D ) from a series of two-dimensional (2-D) images by pre-filtering the 2-D images with a first group of settings before back-projecting the 2-D images into a 3-D image, and then post-filtering the 3-D image with another group of settings. In some embodiments, the first group of settings and the second group of settings are synergistically optimized in relation to each other to provide emphasis on a structure of interest in the object.