-
公开(公告)号:US08437570B2
公开(公告)日:2013-05-07
申请号:US12126302
申请日:2008-05-23
申请人: Antonio Criminisi , Toby Sharp
发明人: Antonio Criminisi , Toby Sharp
CPC分类号: G06T5/002 , G06K9/342 , G06T7/11 , G06T7/155 , G06T2207/10016 , G06T2207/30212
摘要: A method of geodesic image and video processing is proposed. In an embodiment, the method uses a geodesic distance transform to construct an image filter. The filter can be used in a variety of image editing operations such as segmentation, denoising, texture smoothing, image stitching and cartooning. In one embodiment, the method may be made efficient by utilizing parallelism of the algorithm to carry out processing steps on at least two processing cores concurrently. This efficiency may enable high-resolution images and video to be processed at ‘real time’ rates without the need for specialist hardware.
摘要翻译: 提出了一种测地图像和视频处理方法。 在一个实施例中,该方法使用测地距离变换来构造图像滤波器。 滤镜可用于各种图像编辑操作,如分割,去噪,纹理平滑,图像拼接和卡通。 在一个实施例中,可以通过利用算法的并行性来同时对至少两个处理核执行处理步骤来使该方法有效。 这种效率可以使得高分辨率图像和视频以“实时”速率被处理,而不需要专用硬件。
-
公开(公告)号:US20110293180A1
公开(公告)日:2011-12-01
申请号:US12790026
申请日:2010-05-28
申请人: Antonio Criminisi , Jamie Daniel Joseph Shotton , Andrew Fitzgibbon , Toby Sharp , Matthew Darius Cook
发明人: Antonio Criminisi , Jamie Daniel Joseph Shotton , Andrew Fitzgibbon , Toby Sharp , Matthew Darius Cook
CPC分类号: G06K9/34 , G06K9/38 , G06T7/11 , G06T7/168 , G06T7/187 , G06T7/194 , G06T2207/10016 , G06T2207/20048 , G06T2207/20156 , G06T2207/30196 , H04N13/239
摘要: Foreground and background image segmentation is described. In an example, a seed region is selected in a foreground portion of an image, and a geodesic distance is calculated from each image element to the seed region. A subset of the image elements having a geodesic distance less than a threshold is determined, and this subset of image elements are labeled as foreground. In another example, an image element from an image showing at least a user, a foreground object in proximity to the user, and a background is applied to trained decision trees to obtain probabilities of the image element representing one of these items, and a corresponding classification assigned to the image element. This is repeated for each image element. Image elements classified as belonging to the user are labeled as foreground, and image elements classified as foreground objects or background are labeled as background.
摘要翻译: 描述了前景和背景图像分割。 在一个示例中,在图像的前景部分中选择种子区域,并且从每个图像元素计算到种子区域的测地距离。 确定具有小于阈值的测地距离的图像元素的子集,并且该图像元素的子集被标记为前景。 在另一示例中,将来自显示至少用户的图像,邻近用户的前景对象和背景的图像元素应用于经过训练的决策树,以获得表示这些项目之一的图像元素的概率,以及相应的 分类到图像元素的分类。 对于每个图像元素重复这一点。 分类为属于用户的图像元素被标记为前景,并且被分类为前景对象或背景的图像元素被标记为背景。
-
公开(公告)号:US20110228997A1
公开(公告)日:2011-09-22
申请号:US12725811
申请日:2010-03-17
IPC分类号: G06K9/62
CPC分类号: G06T19/00 , G06T15/30 , G06T2200/24 , G06T2207/10081 , G06T2210/12 , G06T2219/004 , G06T2219/2012
摘要: Medical image rendering is described. In an embodiment a medical image visualization engine receives results from an organ recognition system which provide estimated organ centers, bounding boxes and organ classification labels for a given medical image. In examples the visualization engine uses the organ recognition system results to select appropriate transfer functions, bounding regions, clipping planes and camera locations in order to optimally view an organ. For example, a rendering engine uses the selections to render a two-dimensional image of medical diagnostic quality with minimal user input. In an embodiment a graphical user interface populates a list of organs detected in a medical image and a clinician is able to select one organ and immediately be presented with the optimal view of that organ. In an example opacity of background regions of the medical image may be adjusted to provide context for organs presented in a foreground region.
摘要翻译: 描述医学图像呈现。 在一个实施例中,医学图像可视化引擎从提供给定医学图像的估计的器官中心,边界框和器官分类标签的器官识别系统接收结果。 在示例中,可视化引擎使用器官识别系统结果来选择适当的传递函数,边界区域,剪切平面和相机位置,以便最佳地观察器官。 例如,渲染引擎使用选择来以最小的用户输入呈现医学诊断质量的二维图像。 在一个实施例中,图形用户界面填充在医学图像中检测到的器官的列表,并且临床医生能够选择一个器官并且立即呈现该器官的最佳视图。 在示例性医学图像的背景区域的不透明度可以被调整以提供前景区域中呈现的器官的上下文。
-
公开(公告)号:US08571263B2
公开(公告)日:2013-10-29
申请号:US13050858
申请日:2011-03-17
申请人: Jamie Daniel Joseph Shotton , Pushmeet Kohli , Ross Brook Girshick , Andrew Fitzgibbon , Antonio Criminisi
发明人: Jamie Daniel Joseph Shotton , Pushmeet Kohli , Ross Brook Girshick , Andrew Fitzgibbon , Antonio Criminisi
IPC分类号: G06K9/00
CPC分类号: G06F3/017 , G06K9/00362 , G06N5/025
摘要: Predicting joint positions is described, for example, to find joint positions of humans or animals (or parts thereof) in an image to control a computer game or for other applications. In an embodiment image elements of a depth image make joint position votes so that for example, an image element depicting part of a torso may vote for a position of a neck joint, a left knee joint and a right knee joint. A random decision forest may be trained to enable image elements to vote for the positions of one or more joints and the training process may use training images of bodies with specified joint positions. In an example a joint position vote is expressed as a vector representing a distance and a direction of a joint position from an image element making the vote. The random decision forest may be trained using a mixture of objectives.
摘要翻译: 例如,描述关节位置的描述是为了在图像中找到人或动物(或其部分)的联合位置,以控制计算机游戏或用于其他应用。 在一个实施例中,深度图像的图像元素进行联合位置投票,使得例如描绘躯干的一部分的图像元素可以投射颈部关节,左膝关节和右膝关节的位置。 可以对随机决策林进行训练,以使图像元素能够对一个或多个关节的位置进行投票,并且训练过程可以使用具有指定关节位置的身体的训练图像。 在一个例子中,联合立场表决被表示为表示从投票的图像元素的联合位置的距离和方向的向量。 可以使用目标混合来训练随机决策林。
-
公开(公告)号:US08558917B2
公开(公告)日:2013-10-15
申请号:US12096305
申请日:2006-11-24
申请人: Kenneth Wood , Stephen Hodges , Lyndsay Williams , Mitch Goldberg , Carsten Rother , Antonio Criminisi , James Srinivasan
发明人: Kenneth Wood , Stephen Hodges , Lyndsay Williams , Mitch Goldberg , Carsten Rother , Antonio Criminisi , James Srinivasan
CPC分类号: H04N1/33353 , H04N1/00204 , H04N1/00307 , H04N1/32 , H04N2101/00 , H04N2201/0049 , H04N2201/0055
摘要: A method of transferring images from a first device to a second device and computer program code for performing this method is described. A connection characteristic for a connection between the first & second devices is determined and at least one image is selected from a plurality of images on the first device for transfer dependent upon both the connection characteristic and image selection criteria. The selected image(s) are then transferred over the connection from the first device to the second device.
摘要翻译: 描述了将图像从第一设备传送到第二设备的方法以及用于执行该方法的计算机程序代码。 确定第一和第二设备之间的连接的连接特性,并且取决于连接特性和图像选择标准两者,从用于传送的第一设备上的多个图像中选择至少一个图像。 所选择的图像然后通过连接从第一设备传输到第二设备。
-
公开(公告)号:US08498481B2
公开(公告)日:2013-07-30
申请号:US12776082
申请日:2010-05-07
申请人: Andrew Blake , Varun Gulshan , Carsten Rother , Antonio Criminisi
发明人: Andrew Blake , Varun Gulshan , Carsten Rother , Antonio Criminisi
IPC分类号: G06K9/34
CPC分类号: G06T7/11 , G06T7/194 , G06T2207/20101 , G06T2207/20168
摘要: Image segmentation using star-convexity constraints is described. In an example, user input specifies positions of one or more star centers in a foreground to be segmented from a background of an image. In embodiments, an energy function is used to express the problem of segmenting the image and that energy function incorporates a star-convexity constraint which limits the number of possible solutions. For example, the star-convexity constraint may be that, for any point p inside the foreground, all points on a shortest path (which may be geodesic or Euclidean) between the nearest star center and p also lie inside the foreground. In some examples continuous star centers such as lines are used. In embodiments a user may iteratively edit the star centers by adding brush strokes to the image in order to progressively change the star-convexity constraints and obtain an accurate segmentation.
摘要翻译: 描述了使用星形凸度约束的图像分割。 在一个示例中,用户输入指定要从图像的背景分割的前景中的一个或多个星形中心的位置。 在实施例中,能量函数用于表示分割图像的问题,并且能量函数包含限制可能解决方案数量的星形 - 凸度约束。 例如,星凸约束可以是,对于前景中的任何点p,最近的星中心和p之间的最短路径上的所有点(可以是测地线或欧几里德)也位于前景内。 在一些示例中,使用诸如线的连续星形中心。 在实施例中,用户可以通过向图像中添加画笔笔触来迭代地编辑星形中心,以逐渐改变星形凸度约束并获得准确的分割。
-
公开(公告)号:US08103109B2
公开(公告)日:2012-01-24
申请号:US11765264
申请日:2007-06-19
申请人: John Winn , Antonio Criminisi , Ankur Agarwal , Thomas Deselaers
发明人: John Winn , Antonio Criminisi , Ankur Agarwal , Thomas Deselaers
IPC分类号: G06K9/62
CPC分类号: G06K9/00355 , G06F3/017 , G06F3/0425 , G06K9/6282
摘要: There is a need to provide simple, accurate, fast and computationally inexpensive methods of object and hand pose recognition for many applications. For example, to enable a user to make use of his or her hands to drive an application either displayed on a tablet screen or projected onto a table top. There is also a need to be able to discriminate accurately between events when a user's hand or digit touches such a display from events when a user's hand or digit hovers just above that display. A random decision forest is trained to enable recognition of hand poses and objects and optionally also whether those hand poses are touching or not touching a display surface. The random decision forest uses image features such as appearance, shape and optionally stereo image features. In some cases, the training process is cost aware. The resulting recognition system is operable in real-time.
摘要翻译: 需要为许多应用提供简单,准确,快速和计算上便宜的对象和手姿态识别方法。 例如,为了使用户能够利用他或她的手来驱动显示在平板电脑屏幕上或投影到桌面上的应用程序。 当用户的手或数字在该显示器的正上方移动时,当用户的手或数字触发这样的显示时,还需要能够精确地区分事件之间的事件。 训练随机决策林以识别手姿势和物体,并且还可以选择性地确定那些手姿势是触摸还是不接触显示表面。 随机决策林使用图像特征,如外观,形状和可选的立体图像特征。 在某些情况下,培训过程是意识到成本。 所得到的识别系统可以实时操作。
-
公开(公告)号:US20110064303A1
公开(公告)日:2011-03-17
申请号:US12944130
申请日:2010-11-11
申请人: John Winn , Carsten Rother , Antonio Criminisi , Jamie Shotton
发明人: John Winn , Carsten Rother , Antonio Criminisi , Jamie Shotton
IPC分类号: G06K9/62
CPC分类号: G06K9/3233 , G06K9/4604
摘要: Given an image of structured and/or unstructured objects, semantically meaningful areas are automatically partitioned from the image, each area labeled with a specific object class. Shape filters are used to enable capturing of some or all of the shape, texture, and/or appearance context information. A shape filter comprises one or more regions of arbitrary shape, size, and/or position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process a sub-set of possible shape filters is selected and incorporated into a conditional random field model of object classes. The conditional random field model is then used for object detection and recognition.
摘要翻译: 给定结构化和/或非结构化对象的图像,语义上有意义的区域将自动从图像分割,每个区域都标有特定的对象类。 形状滤波器用于使得能够捕获部分或全部形状,纹理和/或外观上下文信息。 形状滤波器包括与指定的文本配对的图像的边界区域内的任意形状,大小和/或位置的一个或多个区域。 文本包括描述对象的表面的纹理的信息。 在训练过程中,选择可能的形状滤波器的子集,并将其合并到对象类的条件随机场模型中。 然后将条件随机场模型用于对象检测和识别。
-
公开(公告)号:US20080184124A1
公开(公告)日:2008-07-31
申请号:US11669107
申请日:2007-01-30
IPC分类号: G06F3/048
摘要: Existing remote workspace sharing systems are difficult to use. For example, changes made on a common work product by one user often appear abruptly on displays viewed by remote users. As a result the interaction is perceived as unnatural by the users and is often inefficient. Images of a display of a common work product are received from a camera at a first location. These images may also comprise information about objects between the display and the camera such as a user's hand editing a document on a tablet PC. These images are combined with images of the shared work product and displayed at remote locations. Advance information about remote user actions is then visible and facilitates collaborative mediation between users. Depth information may be used to influence the process of combining the images.
摘要翻译: 现有的远程工作区共享系统很难使用。 例如,一个用户在公共工作产品上进行的更改通常会在远程用户查看的显示器上突然出现。 因此,互动被用户认为是不自然的,并且通常效率低下。 在第一位置从相机接收公共作品的显示的图像。 这些图像还可以包括关于显示器和相机之间的对象的信息,例如用户在平板PC上编辑文档的手。 这些图像与共享工作产品的图像组合,并在远程位置显示。 然后可以看到有关远程用户操作的高级信息,并促进用户之间的协作中介。 深度信息可以用于影响组合图像的过程。
-
公开(公告)号:US20080075361A1
公开(公告)日:2008-03-27
申请号:US11534019
申请日:2006-09-21
申请人: John Winn , Carsten Rother , Antonio Criminisi , Jamie Shotton
发明人: John Winn , Carsten Rother , Antonio Criminisi , Jamie Shotton
CPC分类号: G06K9/3233 , G06K9/4604
摘要: Given an image of structured and/or unstructured objects we automatically partition it into semantically meaningful areas each labeled with a specific object class. We use a novel type of feature which we refer to as a shape filter. Shape filters enable us to capture some or all of shape, texture and appearance context information. A shape filter comprises one or more regions of arbitrary shape, size and position within a bounding area of an image, paired with a specified texton. A texton comprises information describing the texture of a patch of surface of an object. In a training process we select a sub-set of possible shape filters and incorporate those into a conditional random field model of object classes. That model is then used for object detection and recognition.
摘要翻译: 给定结构化和/或非结构化对象的图像,我们自动将其划分为语义有意义的区域,每个区域都标有特定的对象类。 我们使用一种我们称为形状滤波器的新型特征。 形状过滤器使我们能够捕获部分或全部形状,纹理和外观上下文信息。 形状滤波器包括在图像的边界区域内的任意形状,大小和位置的一个或多个区域,与指定的文本配对。 文本包括描述对象的表面的纹理的信息。 在训练过程中,我们选择可能的形状过滤器的子集,并将其合并到对象类的条件随机场模型中。 然后将该模型用于对象检测和识别。
-
-
-
-
-
-
-
-
-