Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances.
Abstract:
In some embodiments, a register file circuit design process includes instructing an automated integrated circuit design program to generate a register file circuit design, including providing a cell circuit design and instructing the automated integrated circuit design program to generate a selection design, a pre-decode design, and a data gating design. The cell circuit design describes a plurality of selection circuits that have a particular arrangement. The selection design describes a plurality of replica circuits that include respective pluralities of selection circuits having the particular arrangement. The pre-decode design describes a pre-decode circuit configured to identify a plurality of entries identified by a portion of a write instruction. The data gating design describes data gating circuits configured, in response to the pre-decode circuit not identifying respective entries, to disable data inputs to respective write selection circuits connected to the respective entries.
Abstract:
In some embodiments, a register file circuit design process includes instructing an automated integrated circuit design program to generate a register file circuit design, including providing a cell circuit design and instructing the automated integrated circuit design program to generate a selection design, a pre-decode design, and a data gating design. The cell circuit design describes a plurality of selection circuits that have a particular arrangement. The selection design describes a plurality of replica circuits that include respective pluralities of selection circuits having the particular arrangement. The pre-decode design describes a pre-decode circuit configured to identify a plurality of entries identified by a portion of a write instruction. The data gating design describes data gating circuits configured, in response to the pre-decode circuit not identifying respective entries, to disable data inputs to respective write selection circuits connected to the respective entries.
Abstract:
In some embodiments, a system may include at least one voltage controller. At least one of the voltage controllers may assess, during use, an occurrence of a predetermined condition. In some embodiments, the system may include an at least first capacitor. The at least first capacitor may be coupled to at least one of the voltage controllers such that at least one of the voltage controllers engages the at least first capacitor to supply additional current when the predetermined condition occurs. When the increase in current is no longer required the at least first capacitor may be disengaged. The at least first capacitor may be charged when disengaged until a predetermined capacity.
Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g., to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
An apparatus for performing instruction throttling for a multi-processor system is disclosed. The apparatus may include a power estimation circuit, a table, a comparator, and a finite state machine. The power estimation circuit may be configured to receive information on high power instructions issued to a first processor and a second processor, and generate a power estimate dependent upon the received information. The table may be configured to store one or more pre-determined power threshold values, and the comparator may be configured to compare the power estimate with at least one of the pre-determined power threshold values. The finite state machine may be configured to adjust the throttle level of the first and second processors dependent upon the result of the comparison.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
A system include multiple components configured to operate in different modes with different power supply loads. Control circuitry may determine a first voltage margin to be included in a power supply voltage magnitude requested for the components based on current operating modes of the multiple components and detect that a first component of the multiple components has changed its operating mode. In response to the detection, the control circuitry may modify at least one parameter of the following parameters to recover a portion of the first voltage margin: a power supply voltage magnitude and an operating frequency of at least a portion of the system. A magnitude of the modification may be based on an estimated difference between a first amount of dynamic power supply voltage loss before the change in operating mode and a second amount of dynamic power supply voltage loss after the change in operating mode.