Abstract:
An integrated circuit may include multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g., to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
An integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
A method and apparatus for achieving fast PLL lock when exiting a low power state is disclosed. In one embodiment, a method includes operating a PLL in a first state in which the PLL is locked to a first frequency. The method further includes programming the PLL to operate in a second state in which the PLL is locked to a second frequency. The programming may occur while the PLL is operating in the first state, and the PLL may continue operating in the first state after programming is complete. Thereafter, the PLL may be transitioned from the first state to a low power state. Upon exiting the low power state, the PLL may transition directly to the second state, locking to the second frequency, without having to transition to the first state or lock to the first frequency.
Abstract:
A system include multiple components configured to operate in different modes with different power supply loads. Control circuitry may determine a first voltage margin to be included in a power supply voltage magnitude requested for the components based on current operating modes of the multiple components and detect that a first component of the multiple components has changed its operating mode. In response to the detection, the control circuitry may modify at least one parameter of the following parameters to recover a portion of the first voltage margin: a power supply voltage magnitude and an operating frequency of at least a portion of the system. A magnitude of the modification may be based on an estimated difference between a first amount of dynamic power supply voltage loss before the change in operating mode and a second amount of dynamic power supply voltage loss after the change in operating mode.
Abstract:
In an embodiment, an integrated circuit includes multiple instances of a component (e.g. a processor) and a control circuit. The instances may be configured to operate in various modes. Some of the modes are incapable of presenting a worst-case load on the power supply. The control circuit may be configured to monitor the instances and detect the modes in which the instances are operating. Based on the monitoring, the control circuit may request to recover a portion of the voltage margin established for worst-case conditions in the instances. If the instances are to change modes, they may be configured to request mode change from the control circuit. If the mode change causes an increase in the current supply voltage magnitude (e.g. to restore some of the recovered voltage margin), the control circuit may cause the restore and permit it to complete prior to granting the mode change.
Abstract:
An IC in which a power state of a circuit in one power domain is managed based at least in part on a power state of a circuit in another power domain is disclosed. In one embodiment, an IC includes first and second functional circuit blocks in first and second power domains, respectively. A third functional block shared by the first and second is also implemented in the first power domain. A power management unit may control power states of each of the first, second, and third functional circuit blocks. The power management circuit may, when the first functional circuit block is in a sleep state, set a power state of the third functional block in accordance with that of the second functional circuit block.
Abstract:
An IC in which a power state of a circuit in one power domain is managed based at least in part on a power state of a circuit in another power domain is disclosed. In one embodiment, an IC includes first and second functional circuit blocks in first and second power domains, respectively. A third functional block shared by the first and second is also implemented in the first power domain. A power management unit may control power states of each of the first, second, and third functional circuit blocks. The power management circuit may, when the first functional circuit block is in a sleep state, set a power state of the third functional block in accordance with that of the second functional circuit block.
Abstract:
A method and apparatus for reducing capacitor noise in electronic systems is disclosed. A system includes at least one functional circuit block coupled to receive a variable supply voltage. The value of the supply voltage is controlled by a power management circuit. Changing a performance state of the functional circuit block includes increasing the supply voltage for higher performance, and reducing the supply voltage for reduced performance demands. The power management circuit, in changing to a higher performance state, increases the supply voltage at a first rate. A rate control circuit causes the power management circuit to reduce the supply voltage, when changing to a lower performance state, at a second rate that is less than the first rate.
Abstract:
In an embodiment, a system may include multiple processors and an automatic power state controller (APSC) configured to switch the processors between various operating points. The operating points may be described by data programmed into the APSC, and the APSC may include a register that is programmable with a target operating point request identifying a target operating point for the processors from among the described operating points. The data describing the operating points may also include an indication of whether or not the number of processors that may be concurrently active at the operating point is limited. Based on the indication and the number of active processors, the APSC may override the requested operating point with a reduced operating point. In some embodiments, a digital power estimator (DPE) may monitor operation of the processors and may throttle the processors when high power consumption is detected.